Photonic Sensors, 2012, 2 (4): 366, Published Online: Oct. 24, 2013   

Robust Fiber-Optic Sensor Networks

Author Affiliations
Department of Electric and Electronic Engineering, Public University of Navarra, 31006 Pamplona, Spain
Abstract
The ability to operate despite failure will become increasingly important as the use of optical sensor networks grows, and the amount of sensing information to be handled by a sensor network is increasing, especially for safety and security applications. In this review, the four categories of protection to allow service to be reestablished after a failure (dedicated/shared and line/path) are thoroughly discussed. This paper also presents an overview of the most representative robust fiber-optic sensor systems, discussing their schemes, pros and cons.
References

[1] J. M. Lopez-Higuera, Handbook of optical fiber sensing technology, chapter 21, passive fiber optic sensor networks. England: John Wiley & Sons Ltd., 2002, pp. 433-448.

[2] S. Yin, P. B. Ruffin, and F. T. S. Yu, Fiber optic sensors, chapter 1, overview of fiber optic sensors. Boca Raton, FL: CRC Press Taylor & Francis Group, 2008, pp. 1-34.

[3] S. Diaz, S. Abad, and M. Lopez-Amo, “Fiber-optic sensor active networking with distributed erbium-doped fiber and Raman amplification,” Laser and Photonics Reviews, vol. 2, no. 6, pp. 480-497, 2008.

[4] M. Lopez-Amo and J. M. Lopez-Higuera, Fiber Bragg gratings sensors: recent advancements, industrial applications and market exploitation, chapter 6, multiplexing techniques for FBG sensors. Bussum, The Netherlands: Bentham Science Publishers, 2011.

[5] J. L. Santos, O. Frazao, J. M. Baptista, P. A. S. Jorge, I. Dias, F. M. Araújo, et al., “Optical fiber sensing networks,” in SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference Proceedings, IMOC 2009, Belem, Brazil, Nov. 3-6, pp. 290-298, 2009.

[6] M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta, and D. K. Bhattacharya, “Fiber Bragg gratings in structural health monitoring-Present status and applications,” Sensors Actuators A: Physical, vol. 147, no. 1, pp. 150-164, 2008.

[7] H. Li, D. Li, and G. Song, “Recent applications of fiber optic sensors to health monitoring in civil engineering,” Engineering Structures, vol. 26, no. 11, pp. 1647-1657, 2004.

[8] A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, et al., “Fiber grating sensors,” Journal Lightwave Technology, vol. 15, no. 8, pp. 1442-1462, 1997.

[9] K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” Journal Lightwave Technology, vol. 15, no. 8, pp. 1263-1276, 1997.

[10] S. Yin, P. B. Ruffin, and F. T. S. Yu, Fiber optic sensors, chapter 10, applications of fiber optic sensors. Boca Raton, FL: CRC Press Taylor & Francis Group, 2008, pp. 397-434.

[11] M. Fernandez-Vallejo, S. Rota-Rodrigo, and M. Lopez-Amo, “Remote (250 km) fiber Bragg grating multiplexing system,” Sensors, vol. 11, no. 9, pp. 8711-8720, 2011.

[12] D. Leandro, A. Ullan, M. Lopez-Amo, J. M. Lopez-Higuera, and A. Loayssa, “Remote (155 km) fiber Bragg grating interrogation technique combining Raman, Brillouin and erbium gain in a fiber laser,” IEEE Photonic Technology Letters, vol. 23, no. 10, pp. 621-623, 2011.

[13] A. Zornoza, R. A. Pérez-Herrera, C. Elosúa, S. Diaz, C. Bariain, A. Loayssa, et al., “Long-range hybrid network with point and distributed Brillouin sensors using Raman amplification,” Optics Express, vol. 18, no. 9, pp. 9531-9541, 2010.

[14] T. Saitoh, K. Nakamura, Y. Takahashi, H. Iida, Y. Iki, and K. Miyagi, “Ultra-long-distance (230 km) FBG sensor system,” in Proc. SPIE, vol. 7004, pp. 70046C-1-70046C-4, 2008.

[15] S. Diaz, G. Lasheras, and M. Lopez-Amo, “WDM bi-directional transmission over 35 km amplified fiber-optic bus network using Raman amplification for optical sensors,” Optics Express, vol. 13, no. 24, pp. 9666-9671, 2005.

[16] M. J. F. Digonnet, B. J. Vakoc, C. W. Hodgson, and G. S. Kino, “Acoustic fiber sensor arrays,” in Proc. SPIE (The International Society for Optical Engineering), vol. 5502, pp. 39-50, 2004.

[17] R. T. Chen, M. R. Wang, and T. Jannson, “Multiple-mode reconfigurable electro-optic switching network for optical fiber sensor array,” in Proc. SPIE (The International Society for Optical Engineering), San Jose, CA, USA, Sep. 17, vol. 1374, pp. 223-236, 1990.

[18] P. Peng and S. Chi, “A reliable architecture for FBG sensor systems,” Microwave Optics Technology Letters, vol. 39, no. 6, pp. 479-482, 2003.

[19] E. L. Izquierdo, P. Urquhart, and M. López-Amo, “Optical fiber bus protection architecture for the networking of sensors,” in 2007 IEEE International Symposium on Intelligent Signal Processing, WISP, Alcala de Henares, Oct. 3-5, pp. 1-6, 2007.

[20] P. Urquhart, H. Palezi, and P. Jardin, “Optical fiber bus protection network to multiplex sensors: Self-diagnostic operation,” Journal of Lightwave Technology, vol. 29, no. 10, pp. 1427-1436, 2011.

[21] C. W. Hodgson, M. J. F. Digonnet, and H. J. Shaw, “Large-scale interferometric fiber sensor arrays incorporating multiple optical switches,” Optical Fiber Technology, vol. 4, no. 3, pp. 316-327, 1998.

[22] E. L. Izquierdo, P. Urquhart, and M. Lopez-Amo, “Protection architectures for WDM optical fiber bus sensor arrays,” Journal of Engineering, vol. 1, no. 2, pp. 1-18, 2007.

[23] S. Ramamurthy, L. Sahasrabuddhe, and B. Mukherjee, “Survivable WDM mesh networks,” Journal of Lightwave Technology, vol. 21, no. 4, pp. 870-883, 2003.

[24] O. G. López, K. Schires, P. Urquhart, N. Gueyne, and B. Duhamel, “Optical fiber bus protection network to multiplex sensors: amplification by remotely pumped EDFAs,” IEEE Transactions on Instrumentation and Measurement, vol. 58, no. 9, pp. 2945-2951, 2009.

[25] D. Y. Zhou and S. Subramaniam, “Survivability in optical networks,” IEEE Network, vol. 14, no. 6, pp. 16-23, 2000.

[26] A. A. M. Saleh and J. M. Simmons, “Architectural principles of optical regional and metropolitan access networks,” Journal of Lightwave Technology, vol. 17, no. 12, pp. 2431-2448, 1999.

[27] X. Sun and P. Wei, “Using new models to enhance optical-fiber-sensor networks,” SPIE Newsroom, Feb. 8, 2007, DOI: 10.1117/2.1200701.0522.

[28] P. Peng, W. Lin, and S. Chi, “A self-healing architecture for fiber Bragg grating sensor network,” in Proceedings of IEEE Sensors, vol. 1, pp. 60-63, 2004.

[29] C. Yeh, C. Chow, P. Wu, and F. Tseng, “A simple fiber Bragg grating-based sensor network architecture with self-protecting and monitoring functions,” Sensors, vol. 11, no. 2, pp. 1375-1382, 2011.

[30] S. Kuo, P. Peng, J. Sun, and M. Kao, “A delta-star-based multipoint fiber Bragg grating sensor network,” IEEE Sensors Journal, vol. 11, no. 4, pp. 875-881, 2011.

[31] P. Peng, J. Wang, and K. Huang, “Reliable fiber sensor system with star-ring-bus architecture,” Sensors, vol. 10, no. 5, pp. 4194-4205, 2010.

[32] N. Miki and K. Kumozaki, Passive optical networks: principles and practice, chapter 5, ranging and dynamic bandwidth allocation. London, UK: Academic Press, Elsevier, 2007.

[33] P. Peng, H. Tseng, and S. Chi, “Self-healing fiber grating sensor system using tunable multiport fiber laser scheme for intensity and wavelength division multiplexing,” Electronics Letters, vol. 38, no. 24, pp. 1510-1512, 2002.

[34] P. Peng, H. Tseng, and S. Chi, “A hybrid star-ring architecture for fiber Bragg grating sensor system,” IEEE Photonics Technology Letters, vol. 15, no. 9, pp. 1270-1272, 2003.

[35] P. Peng, H. Tseng, and S. Chi, “A novel fiber-laser-based sensor network with self-healing function,” IEEE Photonics Technology Letters, vol. 15, no. 2, pp. 275-277, 2003.

[36] R. A. Perez-Herrera, S. Diaz, P. Urquhart, and M. Lopez-Amo, “A resilient Raman amplified double ring network for multiplexing fiber Bragg grating sensors,” in Proc. SPIE (The International Society for Optical Engineering), vol. 6619, pp. 66193E, 2007.

[37] C. H. Wang, C. H. Yeh, F. Y. Shih, C. W. Chow, K. C. Hsu, Y. Lai, et al., “Self-protection multi-ring-architecture fiber sensing system,” Advanced Materials Research, vol. 47-50, pp. 793-796, 2008.

[38] M. Fernandez-Vallejo, R. A. Perez-Herrera, C. Elosua, S. Diaz, P. Urquhart, C. Bariáin, et al., “Resilient amplified double-ring optical networks to multiplex optical fiber sensors,” Journal of Lightwave Technology, vol. 27, no. 10, pp. 1301-1306, 2009.

[39] C. Yeh, C. Chow, C. Wang, F. Shih, Y. Wu, and S. Chi, “A simple self-restored fiber Bragg grating (FBG)-based passive sensing ring network,” Measurement Science and Technology, vol. 20, no. 4, 043001-1-043001-5, 2009.

[40] H. Zhang, S. Wang, G. Wen, W. Ye, X. Chen, D. Jia, et al., “Large-scale self-healing architectures for fiber Bragg grating sensor network,” in 9th International Conference on Optical Communications and Networks, ICOCN 2010, Nanjing, China, Oct. 24-27, pp. 99-102, 2010.

[41] P. Peng and K. Huang, “Fiber Bragg grating sensor system with two-level ring architecture,” IEEE Sensors Journal, vol. 9, no. 4, pp. 309-313, 2009.

[42] M. Fernandez-Vallejo, S. Díaz, R. A. Perez-Herrera, D. Passaro, S. Selleri, M. A. Quintela, et al., “Resilient long-distance sensor system using a multiwavelength Raman laser,” Measurement Science and Technology, vol. 21, no. 9, pp. 094017-1-094017-5, 2010.

[43] C. Y. Wu, K. M. Feng, P. C. Peng, and C. Y. Lin, “Three-dimensional mesh-based multipoint sensing system with self-healing functionality,” IEEE Photonics Technology Letters, vol. 22, no. 8, pp. 565-567, 2010.

[44] C. Wu, F. Kuo, K. Feng, and P. Peng, “Ring topology based mesh sensing system with self-healing function using FBGs and AWG,” in 2010 Conference on Optical Fiber Communication, Collocated National Fiber Optic Engineers Conference, OFC/NFOEC 2010, San Diego, CA, Mar. 21-25, pp. 1-20, 2010.

[45] P. Peng, J. Chen, and J. Sun, “Novel ring protection architecture for fiber sensor system,” Japanese Journal of Applied Physics, vol. 50, no. 8, pp. 082501-1-082501-4, 2011.

[46] P. C. Peng, C. H. Chang, H. H. Lu, Y. T. Lin, J. W. Sun, and C. H. Jiang, “Novel optical add-drop multiplexer for wavelength-division-multiplexing networks,” Optics Communications, vol. 285, no. 13-14, 15, pp. 3093-3099, 2012.

[47] D. N. Tibet-Shaban and N. J. Zhelezarski, “Design of a resilient optical fiber network for the multiplexing of sensors,” M. S. thesis, Department of Electrical and Electronic Engineering, Public University of Navarra, Spain, 2009.

[48] P. Peng and S. Chi, “A reliable architecture for FBG sensor systems,” Microwave and Optical Technology Letters, vol. 39, no. 6, 479-482, 2003.

[49] T. H. Wu, Fiber network service survivability. Norwood, MA: Artech House, 1992.

[50] J. M. Senior, S. E. Moss, and S. D. Cusworth, “Multiplexing techniques for noninterferometric optical point-sensor networks: a review,” Fiber and Integrated Optics, vol. 17, no. 1, pp. 3-20, 1998.

[51] K. T. V. Grattan and B. T. Meggitt, Optical fiber sensor technology. The Netherlands: Kluwer Academic Publishers, 2000.

[52] V. Montoya, M. Lopez-Amo, and S. Abad, “Improved double-fiber-bus with distributed optical amplification for wavelength-division multiplexing of photonic sensors,” Photonics Technology Letters, vol. 12, no. 9, pp. 1270-1272, 2000.

[53] R. Hernandez-Lorenzo, M. Lopez-Amo, and P. Urquhart, “Single and double distributed optical amplifier fiber bus networks with wavelength division multiplexing for photonic sensors,” Journal of Lightwave Technology, vol. 16, no. 4, pp. 485-489, 1998.

[54] M. Schluter and P. Urquhart, “Optical fiber bus protection network to multiplex sensors: dedicated line and dedicated path operation,” Journal of Lightwave Technology, vol. 29, no. 15, pp. 2204-2215, 2001.

[55] M. Fernandez-Vallejo and M. Lopez-Amo, “Optical fiber networks for remote fiber optic sensors,” Sensors, vol. 12, no. 4, pp. 3929-3951, 2012.

Rosa Ana PEREZ-HERRERA, Montserrat FERNANDEZ-VALLEJO, Manuel LOPEZ-AMO. Robust Fiber-Optic Sensor Networks[J]. Photonic Sensors, 2012, 2(4): 366.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!