Photonics Research, 2015, 3 (5): 05000B60, Published Online: Jan. 6, 2016  

InP photonic circuits using generic integration [Invited] Download: 1276次

Author Affiliations
COBRA Research Institute, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600MB, The Netherlands
Abstract
InP integrated photonics has become a critical enabler for modern telecommunications, and is poised to revolutionize data communications, precision metrology, spectrometry, and imaging. The possibility to integrate high-performance amplifiers, lasers, modulators, and detectors in combination with interferometers within one chip is enabling game-changing performance advances, energy savings, and cost reductions. Generic integration accelerates progress through the separation of applications from a common technology development. In this paper, we review the current status in InP integrated photonics and the efforts to integrate the next generation of high-performance functionality on a common substrate using the generic methodology.
References

[1] C. R. Doerr and K. Okamoto, “Planar lightwave circuits in fiberoptic communications,” in Optical Fiber Telecommunications V A : Components and Subsystems, I. P. Kaminow, T. Li, and A. E. Willner, eds., 5th ed. (Academic, 2008), pp. 269–342.

[2] R. A. Griffin, S. K. Jones, N. Whitbread, S. C. Heck, and L. N. Langley, “InP Mach-Zehnder modulator platform for 10/40/ 100/200-Gb/s operation,” IEEE J. Sel. Top. Quantum Electron. 19, 158–166 (2013).

[3] R. Stabile, A. Rohit, and K. A. Williams, “Monolithically integrated 8 × 8 space and wavelength selective cross-connect,” J. Lightwave Technol. 32, 201–207 (2014).

[4] F. Kish, R. Nagarajan, D. Welch, P. Evans, J. Rossi, J. Pleumeekers, A. Dentai, M. Kato, S. Corzine, R. Muthiah, M. Ziari, R. Schneider, M. Reffle, T. Butrie, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, and C. Joyner, “From visible light-emitting diodes to large scale III-V photonic integrated circuits,” Proc. IEEE 1010, 2255–2270 (2013).

[5] R. Nagarajan, C. R. Doerr, and F. A. Kish, “Semiconductor photonic integrated circuit transmitters and receivers,” in Optical Fiber Telecommunications, I. Kaminow, T. Li, and A. Wilner, eds. (Elsevier, 2013), Chap. 2, Vol. VIA, pp. 25–98.

[6] M. K. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, E. Smalbrugge, T. de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. d’Agostino, H. Rabbani, K. awniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, R. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).

[7] M. K. Smit, J. van der Tol, and M. T. Hill, “Moore’s law in photonics,” Laser Photon. Rev. 6, 1–13 (2012).

[8] JePPIX roadmap, 2015, http://www.jeppix.eu/document_store/ JePPIXRoadmap2015.pdf.

[9] http://paradigm.jeppix.eu/.

[10] http://www.jeppix.eu/.

[11] F. Bontempi, S. Faralli, X. J. M. Leijtens, J. Bolk, G. Contestible, and N. Andriolli, “A 40 Gb/s InP-monolithically integrated DPSKdemodulator enhanced by cross-gain-compression in an SOA,” Opt. Commun. 340, 155–158 (2015).

[12] K. awniczuk, C. Kazmierski, J. G. Provost, M. J. Wale, R. Piramidowicz, P. Szczepan′ ski, M. K. Smit, and X. J. M. Leijtens, “InP-based photonic multiwavelength transmitter with DBR laser array,” IEEE Photon. Technol. Lett. 25, 352–354 (2013).

[13] S. Tahvili, S. Latkowski, E. Smalbrugge, X. J. M. Leijtens, P. J. Williams, M. J. Wale, J. Parra-Cetina, R. Maldonado-Basilio, P. Landais, M. K. Smit, and E. A. J. M. Bente, “InP-based integrated optical pulse shaper: demonstration of chirp compensation,” IEEE Photon. Technol. Lett. 25, 450–453 (2013).

[14] X. Guo, V. Olle, A. Quarterman, A. Wonfor, R. V. Penty, and I. H. White, “Monolithically integrated selectable repetition-rate laser diode source of picosecond optical pulses,” Opt. Lett. 39, 4144–4147 (2014).

[15] S. Latkowski, V. Moskalenko, S. Tahvili, L. Augustin, M. K. Smit, K. A. Williams, and E. A. J. M. Bente, “Monolithically integrated 2.5 GHz extended cavity mode-locked ring laser with intra-cavity phase modulators,” Opt. Lett. 40, 77–80 (2015).

[16] C. Gordón, R. Guzmán, X. Leijtens, and G. Carpintero, “On-chip mode-locked laser diode structure using multimode interference reflectors,” Photon. Res. 3, 15–18 (2015).

[17] V. Moskalenko, S. Latkowski, S. Tahvili, T. de Vries, M. Smit, and E. Bente, “Record bandwidth and sub-picosecond pulses from a monolithically integrated mode-locked quantum well ring laser,” Opt. Express 22, 28865–28874 (2014).

[18] B. W. Tilma, Y. Jiao, J. Kotani, E. Smalbrugge, H. P. M. M. Ambrosius, P. J. Thijs, X. J. M. Leijtens, R. Notzel, M. K. Smit, and E. A. J. M. Bente, “Integrated tunable quantum dot laser for optical coherence tomography in the 1.7 μm wavelength region,” IEEE J. Quantum Electron. 48, 87–98 (2012).

[19] D. d’Agostino, R. Broeke, M. Boerkamp, J. Mink, H. P. M. M. Ambrosius, and M. K. Smit, “AWG based wavelength-meter with pm resolution,” in Proceedings of the 17th European Conference on Integrated Optics and Technical Exhibitionan, 19th Microoptics Conference (ECIO-MOC) (2014), paper Tu2bR2.

[20] Q. Cheng, R. Stabile, A. Rohit, A. Wonfor, R. V. Penty, I. H. White, and K. A. Williams, “First demonstration of automated control and assessment of a dynamically reconfigured monolithic 8×8 wavelength-and-space switch [Invited],” J. Opt. Commun. Netw. 7, A388–A395 (2015).

[21] Q. Cheng, A. Wonfor, J. L. Wei, R. V. Penty, and I. H. White, “Monolithic MZI-SOA hybrid switch for low-power and low-penalty operation,” Opt. Lett. 39, 1449–1452 (2014).

[22] E. Kleijn, D. Melati, A. Melloni, T. de Vries, M. K. Smit, and X. J. M. Leijtens, “Multimode interference couplers with reduced parasitic reflections,” IEEE Photon. Technol. Lett. 26, 408–410 (2014).

[23] J. J. G. M. van der Tol, M. Felicetti, and M. K. Smit, “Increasing tolerance in passive integrated optical polarization converters,” J. Lightwave Technol. 30, 2884–2889 (2012).

[24] D. O. Dzibrou, J. J. G. M. van der Tol, and M. K. Smit, “Improved fabrication process of low-loss and efficient polarization converters in InP-based photonic integrated circuits,” Opt. Lett. 38, 1061–1063 (2013).

[25] D. O. Dzibrou, J. J. G. M. van der Tol, and M. K. Smit, “Tolerant polarization converter for InGaAsP-InP photonic integrated circuits,” Opt. Lett. 38, 3482–3484 (2013).

[26] M. K. Smit, E. C. M. Pennings, and H. Blok, “A normalized approach to the design of optimal optical waveguide bends,” J. Lightwave Technol. 11, 1737–1742 (1993).

[27] R. Stabile, A. Albores-Mejia, and K. A. Williams, “Monolithic active-passive 16 × 16 optoelectronic switch,” Opt. Lett. 37, 4666–4668 (2012).

[28] R. Stabile and K. A. Williams, “Relaxed dimensional tolerance whispering gallery microbends,” J. Lightwave Technol. 29, 1892–1898 (2011).

[29] D. d’Agostino, G. Carnicella, C. Ciminelli, H. P. M. M. Ambrosius, and M. K. Smit, “Design of a compact high-performance InP ring resonator,” in Third Mediterranean Photonics Conference (2014).

[30] E. Kleijn, M. K. Smit, and X. J. M. Leijtens, “New analytical arrayed waveguide grating model,” J. Lightwave Technol. 31, 3309–3314 (2013).

[31] E. Kleijn, M. K. Smit, and X. J. M. Leijtens, “Multimode interference reflectors: a new class of components for photonic integrated circuits,” J. Lightwave Technol. 31, 3055–3063 (2013).

[32] S. Stopinski, M. Malinowski, R. Piramidowicz, C. Kazmierski, M. K. Smit, and X. J. M. Leijtens, “Photonic integrated multichannel WDM modulators for data read-out units,” J. Lightwave Technol. 32, 4481–4489 (2014).

[33] D. d’Agostino, D. Lenstra, H. P. M. M. Ambrosius, and M. K. Smit, “Coupled cavity laser based on anti-resonant imaging via multimode interference,” Opt. Lett. 40, 653–656 (2015).

[34] J. Summers, T. Vallaitis, P. Evans, M. Ziari, P. Studenkov, M. Fisher, J. Sena, A. James, S. Corzine, D. Pavinski, J. Ou-Yang, M. Missey, D. Gold, W. Williams, M. Lai, D. Welch, and F. Kish, “Monolithic InP-based coherent transmitter photonic integrated circuit with 2.25 Tbit/s capacity,” Electron. Lett. 50, 1150–1152 (2014).

[35] Y. Jiao, J. Pello, A. Millan Mejia, L. Shen, E. Smalbrugge, E. J. Geluk, M. Smit, and J. van der Tol, “Fullerene-assisted electron-beam lithography for pattern improvement and loss reduction in InP membrane waveguide devices,” Opt. Lett. 39, 1645–1648 (2014).

[36] http://www.epixfab.eu/.

[37] S. Dogru and N. Dagli, “0.77-V drive voltage electro-optic modulator with bandwidth exceeding 67 GHz,” Opt. Lett. 39, 6074–6076 (2014).

[38] S. Dogru and N. Dagli, “0.2 V drive voltage substrate removed electro-optic Mach-Zehnder modulators with MQW cores at 1.55 μm,” J. Lightwave Technol. 32, 435–439 (2014).

[39] L. Shen, V. Dolores-Calzadilla, C. W. H. A. Wullems, Y. Jiao, A. Millan-Mejia, A. Higuera-Rodriguez, D. Heiss, J. J. G. M. van der Tol, H. P. M. M. Ambrosius, G. Roelkens, and M. K. Smit, “Lowoptical- loss, low-resistance Ag/Ge based ohmic contacts to n-type InP for membrane based waveguide devices,” Opt. Mater. Express 5, 393–398 (2015).

[40] Y. Jiao, D. Heiss, L. Shen, S. Bhat, M. Smit, and J. van der Tol, “First demonstration of an electrically pumped laser in the InP membrane on silicon platform,” in Proceedings Integrated Photonics Research (2015).

[41] V. M. Dolores-Calzadilla, D. Heiss, and M. K. Smit, “Highly efficient metal grating coupler for membrane-based integrated photonics,” Opt. Lett. 39, 2786–2789 (2014).

[42] A. Higuera-Rodriguez, V. Dolores-Calzadilla, Y. Jiao, E. J. Geluk, D. Heiss, and M. K. Smit, “High efficiency metallic grating couplers for membranes on photonic integrated circuits,” Opt. Lett. 40, 2755–2757 (2015).

[43] K. W rhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015). 44. http://www.phastflex.eu/.

[44] Photonics West 2015 exhibition, Moscone Center in San Francisco, USA (2015).

[45] M. K. Smit, X. J. M. Leijtens, E. A. J. M. Bente, J. J. G. M. van der Tol, H. P. M. M. Ambrosius, D. J. Robbins, M. J. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectron. 5, 187–194 (2011).

K. A. Williams, E. A. J. M. Bente, D. Heiss, Y. Jiao, K. ?awniczuk, X. J. M. Leijtens, J. J. G. M. van der Tol, M. K. Smit. InP photonic circuits using generic integration [Invited][J]. Photonics Research, 2015, 3(5): 05000B60.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!