光子学报, 2018, 47 (3): 0316002, 网络出版: 2018-02-01   

石墨烯/纳米铜复合材料的制备及红外性能研究

Research on Preparation and Infrared Property of Graphene and Nano-copper Composites
作者单位
1 脉冲功率激光技术国家重点实验室, 合肥 230037
2 中国科学技术大学 合肥微尺度物质科学国家实验室理化科学实验中心, 合肥 230037
3 安徽省红外与等离子体重点实验室, 合肥 230037
引用该论文

马德跃, 王成名, 李晓霞, 郭宇翔, 曾宇润. 石墨烯/纳米铜复合材料的制备及红外性能研究[J]. 光子学报, 2018, 47(3): 0316002.

MA De-yue, WANG Cheng-ming, LI Xiao-xia, GUO Yu-xiang, ZENG Yu-run. Research on Preparation and Infrared Property of Graphene and Nano-copper Composites[J]. ACTA PHOTONICA SINICA, 2018, 47(3): 0316002.

参考文献

[1] KIM S C, PARK Y K, CHUNG M, et al. Synthesis process of copper/grapheme nanocomposite by the liquid phase plasma reduction method[J]. Journal of Nanoscience& Nanotechnology, 2016, 16(2): 2080-2083.

[2] SHABNAM L, FAISAL S N, ROY A K, et al. Doped graphene/Cu nanocomposite: A high sensitivity non-enzymatic glucose sensor for food[J]. Food Chemistry, 2017, 221(7): 751-759.

[3] LI Wei-ping, LI De-long, FU Qiang, et al. Conductive enhancement of copper/graphene composites based on high-quality graphene[J]. RSC Advances, 2015, 5(98): 80428-80433.

[4] WANG Li-dong, CUI Ye, LI Rui-yu, et al. Effect of H2 reduction temperature on the properties of reduced graphene oxide and copper matrix composites[J]. Acta Metallurgica Sinica, 2014, 27(5): 924-929.

[5] PAVITHRA C L P, SARADA B V, RAJULAPATI K V, et al. A new electrochemical approach for the synthesis of copper-graphene nanocomposite foils with high hardness[J]. Scientific Reports, 2014, 4(6): 40-49.

[6] ORTEGAAMAYA R, MATSUMOTO Y, ESPINOZARIVAS A M, et al. Development of highly faceted reduced graphene oxide-coated copper oxide and copper nanoparticles on a copper foil surface[J]. Beilstein Journal of Nanotechnology, 2016, 7(1): 1010-1017.

[7] CHEN Tian, QIU Jin-hao, ZHU Kong-jun, et al. Copper phthalocyanine oligomer noncovalent functionalized graphene-polyurethane dielectric elastomer composites for flexible micro-actuator[J]. Soft Matter, 2015, 13(4): 210-218.

[8] WU Pei-wen, ZHU Wen-shuai, DAI Bi-lian, et al. Copper nanoparticles advance electron mobility of graphene-like boron nitride for enhanced aerobic oxidative desulfurization[J]. Chemical Engineering Journal, 2016, 301(8): 123-131.

[9] ZHAO Qing-shan, BAI Chan, ZHANG Wen-feng, et al. Catalytic epoxidation of olefins with graphene oxide supported copper (salen) complex[J]. Industrial & Engineering Chemistry Research, 2015, 53(11): 4232–4238.

[10] KHOLMANOV I N, DOMINGUES S H, CHOU H, et al. Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes[J]. Acs Nano, 2013, 7(2): 1811-1816.

[11] GUO Dong-jie, WEI Zi-ying, SHI Bo, et al. Copper nanoparticles spaced 3D graphene films for binder-free lithium-storing electrodes[J]. Journal of Materials Chemistry A, 2016, 4(21): 8466-8477.

[12] ZHAO Si-yuan, LIU Xiao-jun, XU Zheng, et al. Graphene encapsulated copper microwires as highly MRI compatible neural electrodes[J]. Nano Letters, 2016, 16(1): 7731-7738.

[13] SHEN Jian-feng, HU Yi-zhe, SHI Min, et al. Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets[J]. Chemistry of Materials, 2009, 21(15): 3514-3520.

[14] 何岷洪. 红外隐身材料的制备及红外发射率性能研究[D]. 太原: 中北大学, 2013.

[15] 戴宪起, 唐亚楠, 赵建华. 缺陷对Pt在石墨烯上吸附影响的研究[J]. 原子与分子物理学报, 2010, 27(5): 937-941.

    DAI Xian-qi, TANG Ya-nan, ZHAO Jian-hua. The effects of defects on Pt absorption on graphene[J]. Journal of Atomic and Molecular Physics, 2010, 27(5): 937-941.

[16] 徐宁, 张超, 孔凡杰,等. 褶皱石墨带的电子输运性质[J]. 物理化学学报, 2011, 27(9): 2107-2110.

    XU Ning, ZHANG Chao, KONG Fan-jie, et al. Transport properties of corrugated graphene nanoribbons[J]. Acta Physico-Chimica Sinica, 2011, 27(9): 2107- 2110.

[17] ZHANG Yang, YU Li-li, YANG Ya-yun, et al. A non-enzymatic glucose sensor based on electrodepositing Cu/grapheme nanocomposite film modified electrode[J]. Journal of Shanghai Normal University (Natural Sciences), 2013, 4(1): 37-43.

[18] 樊洁平, 刘惠民, 田强. 光吸收介质的吸收系数与介电函数虚部的关系[J]. 大学物理, 2009, 28(3): 24-25.

    FAN Jie-ping, LIU Hui-min, TIAN Qiang. The imaginary part of dielectric function and the absorption coefficient[J]. College Physics, 2009, 28(3): 24-25.

[19] 芶清泉. 金属原子团簇与碳原子团簇的电子能谱与吸收光谱[J]. 原子与分子物理学报, 1994, 11(4): 337-347.

    GOU Qing-quan. Electronic energy levels and absorption spectra of metal clusters and carbon clusters[J]. Chinese Journal of Atomic and Molecular Physics, 1994, 11(4): 337-347.

[20] 柯维娜, 朱定强, 蔡国飙. 金属光谱发射率的仿真与分析[J]. 航空学报, 2010, 31(11): 2139-2145.

    KE Wei-na, ZHU Ding-qiang, CAI Guo-biao. Simulation and analysis of spectral emissivity of metals[J]. Acta Aeronauticaet Astronautica Sinica, 2010, 31(11): 2139-2145.

[21] BORN M, WOLF E. Principles of optics[M]. 6rd ed.Oxford: Pergamon Press, 1984.

马德跃, 王成名, 李晓霞, 郭宇翔, 曾宇润. 石墨烯/纳米铜复合材料的制备及红外性能研究[J]. 光子学报, 2018, 47(3): 0316002. MA De-yue, WANG Cheng-ming, LI Xiao-xia, GUO Yu-xiang, ZENG Yu-run. Research on Preparation and Infrared Property of Graphene and Nano-copper Composites[J]. ACTA PHOTONICA SINICA, 2018, 47(3): 0316002.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!