光子学报, 2018, 47 (3): 0316002, 网络出版: 2018-02-01   

石墨烯/纳米铜复合材料的制备及红外性能研究

Research on Preparation and Infrared Property of Graphene and Nano-copper Composites
作者单位
1 脉冲功率激光技术国家重点实验室, 合肥 230037
2 中国科学技术大学 合肥微尺度物质科学国家实验室理化科学实验中心, 合肥 230037
3 安徽省红外与等离子体重点实验室, 合肥 230037
摘要
采用原位还原法制备了还原石墨烯/纳米铜复合材料, 对其进行表征分析.测量该材料的中远红外波段的复折射率, 计算其吸收系数和大气窗口内的法向光谱发射率并进行实验验证, 进而分析其在中远红外波段的吸收和辐射性能.结果表明, 纳米铜吸附在还原石墨烯表面, 粒径集中在15~25 nm; 不同尺寸的纳米铜、还原石墨烯及其表面缺陷和官能团等的吸收特性, 使该复合材料在8~9.2 μm、6~6.5 μm、2~3 μm波段内的吸收较强, 且在远红外波段吸收最强; 其在3~5 μm的法向发射率在0.65~0.68范围内, 法向发射率在8~9.5 μm内有最小值0.53, 而后稳定在0.58左右, 其总法向发射率分别为0.66和0.59, 且与测量值相符.该复合材料可用于红外吸收、消光材料和隐身涂料等方面.
Abstract
The reduced graphene oxide/nano-copper composites were prepared by using in-situ reduction method and characterized. The complex refractive index of the composites in middle and far infrared band were measured, and its absorption coefficient and normal spectral emissivity in the atmospheric window were calculated and verified by experiment, along with the analysis of its absorption and radiance performance in middle and far infrared. The results show that nano-coppers are adsorbed on the surface of reduced graphene oxide, and its size almost concentrate in 15~25 nm. Due to the different sizes of nano-copper, and reduced graphene oxide together with its surface defects and functional groups, the composites have a strong absorption performance in 8~9.2 μm, 6~6.5 μm, 2~3 μm. Its normal spectral emissivity in 3~5 μm is within 0.65~0.68, but it has a minimum value of 0.53 in 8~9.5 μm, and then stabilize at about 0.58. Their total normal emissivity is 0.66 and 0.59 respectively, which are consistent with the experiment. The composites can be used for infrared absorption, extinction materials and stealthy coatings.
参考文献

[1] KIM S C, PARK Y K, CHUNG M, et al. Synthesis process of copper/grapheme nanocomposite by the liquid phase plasma reduction method[J]. Journal of Nanoscience& Nanotechnology, 2016, 16(2): 2080-2083.

[2] SHABNAM L, FAISAL S N, ROY A K, et al. Doped graphene/Cu nanocomposite: A high sensitivity non-enzymatic glucose sensor for food[J]. Food Chemistry, 2017, 221(7): 751-759.

[3] LI Wei-ping, LI De-long, FU Qiang, et al. Conductive enhancement of copper/graphene composites based on high-quality graphene[J]. RSC Advances, 2015, 5(98): 80428-80433.

[4] WANG Li-dong, CUI Ye, LI Rui-yu, et al. Effect of H2 reduction temperature on the properties of reduced graphene oxide and copper matrix composites[J]. Acta Metallurgica Sinica, 2014, 27(5): 924-929.

[5] PAVITHRA C L P, SARADA B V, RAJULAPATI K V, et al. A new electrochemical approach for the synthesis of copper-graphene nanocomposite foils with high hardness[J]. Scientific Reports, 2014, 4(6): 40-49.

[6] ORTEGAAMAYA R, MATSUMOTO Y, ESPINOZARIVAS A M, et al. Development of highly faceted reduced graphene oxide-coated copper oxide and copper nanoparticles on a copper foil surface[J]. Beilstein Journal of Nanotechnology, 2016, 7(1): 1010-1017.

[7] CHEN Tian, QIU Jin-hao, ZHU Kong-jun, et al. Copper phthalocyanine oligomer noncovalent functionalized graphene-polyurethane dielectric elastomer composites for flexible micro-actuator[J]. Soft Matter, 2015, 13(4): 210-218.

[8] WU Pei-wen, ZHU Wen-shuai, DAI Bi-lian, et al. Copper nanoparticles advance electron mobility of graphene-like boron nitride for enhanced aerobic oxidative desulfurization[J]. Chemical Engineering Journal, 2016, 301(8): 123-131.

[9] ZHAO Qing-shan, BAI Chan, ZHANG Wen-feng, et al. Catalytic epoxidation of olefins with graphene oxide supported copper (salen) complex[J]. Industrial & Engineering Chemistry Research, 2015, 53(11): 4232–4238.

[10] KHOLMANOV I N, DOMINGUES S H, CHOU H, et al. Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes[J]. Acs Nano, 2013, 7(2): 1811-1816.

[11] GUO Dong-jie, WEI Zi-ying, SHI Bo, et al. Copper nanoparticles spaced 3D graphene films for binder-free lithium-storing electrodes[J]. Journal of Materials Chemistry A, 2016, 4(21): 8466-8477.

[12] ZHAO Si-yuan, LIU Xiao-jun, XU Zheng, et al. Graphene encapsulated copper microwires as highly MRI compatible neural electrodes[J]. Nano Letters, 2016, 16(1): 7731-7738.

[13] SHEN Jian-feng, HU Yi-zhe, SHI Min, et al. Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets[J]. Chemistry of Materials, 2009, 21(15): 3514-3520.

[14] 何岷洪. 红外隐身材料的制备及红外发射率性能研究[D]. 太原: 中北大学, 2013.

[15] 戴宪起, 唐亚楠, 赵建华. 缺陷对Pt在石墨烯上吸附影响的研究[J]. 原子与分子物理学报, 2010, 27(5): 937-941.

    DAI Xian-qi, TANG Ya-nan, ZHAO Jian-hua. The effects of defects on Pt absorption on graphene[J]. Journal of Atomic and Molecular Physics, 2010, 27(5): 937-941.

[16] 徐宁, 张超, 孔凡杰,等. 褶皱石墨带的电子输运性质[J]. 物理化学学报, 2011, 27(9): 2107-2110.

    XU Ning, ZHANG Chao, KONG Fan-jie, et al. Transport properties of corrugated graphene nanoribbons[J]. Acta Physico-Chimica Sinica, 2011, 27(9): 2107- 2110.

[17] ZHANG Yang, YU Li-li, YANG Ya-yun, et al. A non-enzymatic glucose sensor based on electrodepositing Cu/grapheme nanocomposite film modified electrode[J]. Journal of Shanghai Normal University (Natural Sciences), 2013, 4(1): 37-43.

[18] 樊洁平, 刘惠民, 田强. 光吸收介质的吸收系数与介电函数虚部的关系[J]. 大学物理, 2009, 28(3): 24-25.

    FAN Jie-ping, LIU Hui-min, TIAN Qiang. The imaginary part of dielectric function and the absorption coefficient[J]. College Physics, 2009, 28(3): 24-25.

[19] 芶清泉. 金属原子团簇与碳原子团簇的电子能谱与吸收光谱[J]. 原子与分子物理学报, 1994, 11(4): 337-347.

    GOU Qing-quan. Electronic energy levels and absorption spectra of metal clusters and carbon clusters[J]. Chinese Journal of Atomic and Molecular Physics, 1994, 11(4): 337-347.

[20] 柯维娜, 朱定强, 蔡国飙. 金属光谱发射率的仿真与分析[J]. 航空学报, 2010, 31(11): 2139-2145.

    KE Wei-na, ZHU Ding-qiang, CAI Guo-biao. Simulation and analysis of spectral emissivity of metals[J]. Acta Aeronauticaet Astronautica Sinica, 2010, 31(11): 2139-2145.

[21] BORN M, WOLF E. Principles of optics[M]. 6rd ed.Oxford: Pergamon Press, 1984.

马德跃, 王成名, 李晓霞, 郭宇翔, 曾宇润. 石墨烯/纳米铜复合材料的制备及红外性能研究[J]. 光子学报, 2018, 47(3): 0316002. MA De-yue, WANG Cheng-ming, LI Xiao-xia, GUO Yu-xiang, ZENG Yu-run. Research on Preparation and Infrared Property of Graphene and Nano-copper Composites[J]. ACTA PHOTONICA SINICA, 2018, 47(3): 0316002.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!