液晶与显示, 2020, 35 (7): 762, 网络出版: 2020-10-27  

基于液晶的太赫兹波前调控器件研究进展

Progress of liquid crystal based terahertz wavefront modulators
作者单位
1 广州铁路职业技术学院 信息工程学院, 广东 广州 510430
2 南京大学 现代工程与应用科学学院, 江苏 南京 210093
摘要
液晶作为宽波段外场可调谐材料在太赫兹波段具有显著的应用优势, 有望实现高效、动态的太赫兹波前调控。本文简要综述了近年来南京大学液晶与微纳光学研究组和其他科研团队在基于液晶的太赫兹波前调控器件领域展开的部分研究, 包括基于纯液晶的太赫兹调波器件和基于液晶集成超构表面的太赫兹调波器件两类, 系统阐述了这些器件的动态可调谐、多样化功能的特征以及潜在的应用前景, 并对液晶技术与太赫兹技术相结合的发展趋势进行了展望。
Abstract
Liquid crystal, with a broadband external field induced tunability, has obvious application advantages in the terahertz band. It is expected to realize efficient and active terahertz wavefront modulation. This article briefly summarizes some of the recent researches carried out by the group of liquid crystal and micro/nano optics of Nanjing University and other research teams in the field of liquid crystal based terahertz wavefront modulators. There are mainly two types, including pure liquid crystal based modulators and liquid crystal integrated metadevices. The characteristics of the dynamic tunability, diversified functions and potential application prospects of these devices are systematically described. The development trend of the combination of liquid crystal and terahertz technology is also discussed.
参考文献

[1] TONOUCHI M. Cutting-edge terahertz technology [J]. Nat. Photonics, 2007, 1(2): 97-105.

    TONOUCHI M. Cutting-edge terahertz technology [J]. Nat. Photonics, 2007, 1(2): 97-105.

[2] FERGUSON B, ZHANG X C. Materials for terahertz science and technology [J]. Nat. Mater., 2002, 1(1): 26-33.

    FERGUSON B, ZHANG X C. Materials for terahertz science and technology [J]. Nat. Mater., 2002, 1(1): 26-33.

[3] GUO X G, CAO J C, ZHANG R, et al. Recent progress in terahertz quantum-well photodetectors [J]. IEEE J. Sel. Top. Quant. Electron., 2013, 19(1): 8500508.

    GUO X G, CAO J C, ZHANG R, et al. Recent progress in terahertz quantum-well photodetectors [J]. IEEE J. Sel. Top. Quant. Electron., 2013, 19(1): 8500508.

[4] MARKELZ A G, ROITBERG A, HEILWEIL E J. Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz [J]. Chem. Phys. Lett., 2000, 320(1/2): 42-48.

    MARKELZ A G, ROITBERG A, HEILWEIL E J. Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz [J]. Chem. Phys. Lett., 2000, 320(1/2): 42-48.

[5] DUVILLARET L, GARET F, COUTAZ J L. A reliable method for extraction of material parameters in terahertz time-domain spectroscopy [J]. IEEE J. Sel. Top. Quant. Electron., 1996, 2(3): 739-746.

    DUVILLARET L, GARET F, COUTAZ J L. A reliable method for extraction of material parameters in terahertz time-domain spectroscopy [J]. IEEE J. Sel. Top. Quant. Electron., 1996, 2(3): 739-746.

[6] KLEINE-OSTMANN T, NAGATSUMA T. A review on terahertz communications research [J]. J. Infrared Millim. Terahertz Waves, 2011, 32(2): 143-171.

    KLEINE-OSTMANN T, NAGATSUMA T. A review on terahertz communications research [J]. J. Infrared Millim. Terahertz Waves, 2011, 32(2): 143-171.

[7] ZHAO J Y, CHU W, GUO L J, et al. Terahertz imaging with sub-wavelength resolution by femtosecond laser filament in air [J]. Sci. Rep., 2014, 4: 3880.

    ZHAO J Y, CHU W, GUO L J, et al. Terahertz imaging with sub-wavelength resolution by femtosecond laser filament in air [J]. Sci. Rep., 2014, 4: 3880.

[8] RAHMAN A, RAHMAN A K, RAO B. Early detection of skin cancer via terahertz spectral profiling and 3D imaging [J]. Biosens. Bioelectron., 2016, 82: 64-70.

    RAHMAN A, RAHMAN A K, RAO B. Early detection of skin cancer via terahertz spectral profiling and 3D imaging [J]. Biosens. Bioelectron., 2016, 82: 64-70.

[9] REDO-SANCHEZ A, LAMAN N, SCHULKIN B, et al. Review of terahertz technology readiness assessment and applications [J]. J. Infrared Millim. Terahertz Waves, 2013, 34(9): 500-518.

    REDO-SANCHEZ A, LAMAN N, SCHULKIN B, et al. Review of terahertz technology readiness assessment and applications [J]. J. Infrared Millim. Terahertz Waves, 2013, 34(9): 500-518.

[10] HEYMAN J N, NEOCLEOUS P, HEBERT D, et al. Terahertz emission from GaAs and InAs in a magnetic field [J]. Phys. Rev. B, 2001, 64(8): 085202.

    HEYMAN J N, NEOCLEOUS P, HEBERT D, et al. Terahertz emission from GaAs and InAs in a magnetic field [J]. Phys. Rev. B, 2001, 64(8): 085202.

[11] SHALABY M, HAURI C P. Spectrally intense terahertz source based on triangular Selenium [J]. Sci. Rep., 2015, 5: 8059.

    SHALABY M, HAURI C P. Spectrally intense terahertz source based on triangular Selenium [J]. Sci. Rep., 2015, 5: 8059.

[12] TONG J Y, MUTHEE M, CHEN S Y, et al. Antenna enhanced graphene THz emitter and detector [J]. Nano Lett., 2015, 15(8): 5295-5301.

    TONG J Y, MUTHEE M, CHEN S Y, et al. Antenna enhanced graphene THz emitter and detector [J]. Nano Lett., 2015, 15(8): 5295-5301.

[13] KAWANO Y, ISHIBASHI K. An on-chip near-field terahertz probe and detector [J]. Nat. Photonics, 2008, 2(10): 618-621.

    KAWANO Y, ISHIBASHI K. An on-chip near-field terahertz probe and detector [J]. Nat. Photonics, 2008, 2(10): 618-621.

[14] CAI X H, SUSHKOV A B, SUESS R J, et al. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene [J]. Nat. Nanotechnol., 2014, 9(10): 814-819.

    CAI X H, SUSHKOV A B, SUESS R J, et al. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene [J]. Nat. Nanotechnol., 2014, 9(10): 814-819.

[15] MITTENDORFF M, WINNERL S, KAMANN J, et al. Ultrafast graphene-based broadband THz detector [J]. Appl. Phys. Lett., 2013, 103(2): 021113.

    MITTENDORFF M, WINNERL S, KAMANN J, et al. Ultrafast graphene-based broadband THz detector [J]. Appl. Phys. Lett., 2013, 103(2): 021113.

[16] KAWADA Y, YASUDA T, NAKANISHI A, et al. Achromatic prism-type wave plate for broadband terahertz pulses [J]. Opt. Lett., 2014, 39(9): 2794-2797.

    KAWADA Y, YASUDA T, NAKANISHI A, et al. Achromatic prism-type wave plate for broadband terahertz pulses [J]. Opt. Lett., 2014, 39(9): 2794-2797.

[17] ZHANG L L, ZHONG H, DENG C, et al. Terahertz wave polarization analyzer using birefringent materials [J]. Opt. Express, 2009, 17(22): 20266-20271.

    ZHANG L L, ZHONG H, DENG C, et al. Terahertz wave polarization analyzer using birefringent materials [J]. Opt. Express, 2009, 17(22): 20266-20271.

[18] SAHA S C, MA Y, GRANT J P, et al. Fabrication of silicon quarter wave plate at Terahertz frequency [C]//Proceedings of 2010 IEEE Photonics Society Winter Topicals Meeting Series. Majorca, Spain: IEEE, 2010: 38-39.

    SAHA S C, MA Y, GRANT J P, et al. Fabrication of silicon quarter wave plate at Terahertz frequency [C]//Proceedings of 2010 IEEE Photonics Society Winter Topicals Meeting Series. Majorca, Spain: IEEE, 2010: 38-39.

[19] CLARK N A, LAGERWALL S T. Submicrosecond bistable electro-optic switching in liquid crystals [J]. Appl. Phys. Lett., 1980, 36(11): 899-901.

    CLARK N A, LAGERWALL S T. Submicrosecond bistable electro-optic switching in liquid crystals [J]. Appl. Phys. Lett., 1980, 36(11): 899-901.

[20] WILK R, VIEWEG N, KOPSCHINSKI O, et al. Liquid crystal based electrically switchable Bragg structure for THz waves [J]. Opt. Express, 2009, 17(9): 7377-7382.

    WILK R, VIEWEG N, KOPSCHINSKI O, et al. Liquid crystal based electrically switchable Bragg structure for THz waves [J]. Opt. Express, 2009, 17(9): 7377-7382.

[21] OH-E M, YOKOYAMA H, KOEBERG M, et al. High-frequency dielectric relaxation of liquid crystals: THz time-domain spectroscopy of liquid crystal colloids [J]. Opt. Express, 2006, 14(23): 11433-11441.

    OH-E M, YOKOYAMA H, KOEBERG M, et al. High-frequency dielectric relaxation of liquid crystals: THz time-domain spectroscopy of liquid crystal colloids [J]. Opt. Express, 2006, 14(23): 11433-11441.

[22] YUAN Y H, HE J, LIU J S, et al. Electrically controlled broadband THz switch based on liquid-crystal-filled multi-layer metallic grating structures [J]. J. Phys.: Conf. Ser., 2011, 276(1): 012228.

    YUAN Y H, HE J, LIU J S, et al. Electrically controlled broadband THz switch based on liquid-crystal-filled multi-layer metallic grating structures [J]. J. Phys.: Conf. Ser., 2011, 276(1): 012228.

[23] REUTER M, ALTMANN K, VIEWEG N, et al. Highly birefringent liquid crystal at THz frequencies [C]//Proceedings of 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves. Wollongong, NSW, Australia: IEEE, 2012: 1-2.

    REUTER M, ALTMANN K, VIEWEG N, et al. Highly birefringent liquid crystal at THz frequencies [C]//Proceedings of 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves. Wollongong, NSW, Australia: IEEE, 2012: 1-2.

[24] WANG L, QIU H S, PHAN T N K, et al. Visible measurement of terahertz power based on capsulized cholesteric liquid crystal film [J]. Appl. Sci., 2018, 8(12): 2580.

    WANG L, QIU H S, PHAN T N K, et al. Visible measurement of terahertz power based on capsulized cholesteric liquid crystal film [J]. Appl. Sci., 2018, 8(12): 2580.

[25] CHEN C Y, TSAI T R, PAN C L, et al. Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals [J]. Appl. Phys. Lett., 2003, 83(22): 4497-4499.

    CHEN C Y, TSAI T R, PAN C L, et al. Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals [J]. Appl. Phys. Lett., 2003, 83(22): 4497-4499.

[26] CHEN C Y, HSIEH C F, LIN Y F, et al. Magnetically tunable room-temperature 2π liquid crystal terahertz phase shifter [J]. Opt. Express, 2004, 12(12): 2625-2630.

    CHEN C Y, HSIEH C F, LIN Y F, et al. Magnetically tunable room-temperature 2π liquid crystal terahertz phase shifter [J]. Opt. Express, 2004, 12(12): 2625-2630.

[27] CHEN C Y, PAN C L, HSIEH C F, et al. Liquid-crystal-based terahertz tunable Lyot filter [J]. Appl. Phys. Lett., 2006, 88(10): 101107.

    CHEN C Y, PAN C L, HSIEH C F, et al. Liquid-crystal-based terahertz tunable Lyot filter [J]. Appl. Phys. Lett., 2006, 88(10): 101107.

[28] HO I C, PAN C L, HSIEH C F, et al. Liquid-crystal-based terahertz tunable Solc filter [J]. Opt. Lett., 2008, 33(13): 1401-1403.

    HO I C, PAN C L, HSIEH C F, et al. Liquid-crystal-based terahertz tunable Solc filter [J]. Opt. Lett., 2008, 33(13): 1401-1403.

[29] HSIEH C F, LAI Y C, PAN R P, et al. Polarizing terahertz waves with nematic liquid crystals [J]. Opt. Lett., 2008, 33(11): 1174-1176.

    HSIEH C F, LAI Y C, PAN R P, et al. Polarizing terahertz waves with nematic liquid crystals [J]. Opt. Lett., 2008, 33(11): 1174-1176.

[30] YANG L, FAN F, CHEN M, et al. Magnetically induced birefringence of randomly aligned liquid crystals in the terahertz regime under a weak magnetic field [J]. Opt. Mater. Express, 2016, 6(9): 2803-2811.

    YANG L, FAN F, CHEN M, et al. Magnetically induced birefringence of randomly aligned liquid crystals in the terahertz regime under a weak magnetic field [J]. Opt. Mater. Express, 2016, 6(9): 2803-2811.

[31] LIN C J, LI Y T, HSIEH C F, et al. Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating [J]. Opt. Express, 2008, 16(5): 2995-3001.

    LIN C J, LI Y T, HSIEH C F, et al. Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating [J]. Opt. Express, 2008, 16(5): 2995-3001.

[32] YANG C S, CHANG C H, LIN M H, et al. THz conductivities of indium-tin-oxide nanowhiskers as a graded-refractive-index structure [J]. Opt. Express, 2012, 20(S4): A441-A451.

    YANG C S, CHANG C H, LIN M H, et al. THz conductivities of indium-tin-oxide nanowhiskers as a graded-refractive-index structure [J]. Opt. Express, 2012, 20(S4): A441-A451.

[33] YANG C S, TANG T T, PAN R P, et al. Liquid crystal terahertz phase shifters with functional indium-tin-oxide nanostructures for biasing and alignment [J]. Appl. Phys. Lett., 2014, 104(14): 141106.

    YANG C S, TANG T T, PAN R P, et al. Liquid crystal terahertz phase shifters with functional indium-tin-oxide nanostructures for biasing and alignment [J]. Appl. Phys. Lett., 2014, 104(14): 141106.

[34] KAKENOV N, TAKAN T, OZKAN V A, et al. Graphene-enabled electrically controlled terahertz spatial light modulators [J]. Opt. Lett., 2015, 40(9): 1984-1987.

    KAKENOV N, TAKAN T, OZKAN V A, et al. Graphene-enabled electrically controlled terahertz spatial light modulators [J]. Opt. Lett., 2015, 40(9): 1984-1987.

[35] YANF, PARROTT E P, LIU X D, et al. Low-cost and broad band terahertz antireflection coatings based on DMSO-doped PEDOT/PSS [J]. Opt. Lett., 2015, 40(12): 2886-2889.

    YANF, PARROTT E P, LIU X D, et al. Low-cost and broad band terahertz antireflection coatings based on DMSO-doped PEDOT/PSS [J]. Opt. Lett., 2015, 40(12): 2886-2889.

[36] WU Y, RUAN X Z, CHEN C H, et al. Graphene/liquid crystal based terahertz phase shifters [J]. Opt. Express, 2013, 21(18): 21395-21402.

    WU Y, RUAN X Z, CHEN C H, et al. Graphene/liquid crystal based terahertz phase shifters [J]. Opt. Express, 2013, 21(18): 21395-21402.

[37] DU Y, TIAN H, CUI X, et al. Electrically tunable liquid crystal terahertz phase shifter driven by transparent polymer electrodes [J]. J. Mater. Chem. C, 2016, 4(19): 4138-4142.

    DU Y, TIAN H, CUI X, et al. Electrically tunable liquid crystal terahertz phase shifter driven by transparent polymer electrodes [J]. J. Mater. Chem. C, 2016, 4(19): 4138-4142.

[38] YAN F, PARROTT E P J, UNG B S Y, et al. Solvent doping of PEDOT/PSS: effect on terahertz optoelectronic properties and utilization in terahertz devices [J]. J. Phys. Chem. C, 2015, 119(12): 6813-6818.

    YAN F, PARROTT E P J, UNG B S Y, et al. Solvent doping of PEDOT/PSS: effect on terahertz optoelectronic properties and utilization in terahertz devices [J]. J. Phys. Chem. C, 2015, 119(12): 6813-6818.

[39] HSIEH C F, PAN R P, TANG T T, et al. Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate [J]. Opt. Lett., 2006, 31(8): 1112-1114.

    HSIEH C F, PAN R P, TANG T T, et al. Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate [J]. Opt. Lett., 2006, 31(8): 1112-1114.

[40] LIU L M, SHADRIVOV I V, POWELL D A, et al. Temperature control of terahertz metamaterials with liquid crystals [J]. IEEE Trans. Terahertz Sci. Technol., 2013, 3(6): 827-831.

    LIU L M, SHADRIVOV I V, POWELL D A, et al. Temperature control of terahertz metamaterials with liquid crystals [J]. IEEE Trans. Terahertz Sci. Technol., 2013, 3(6): 827-831.

[41] KOWERDZIEJ R, OLIFIERCZUK M, PARKA J. Thermally induced tunability of a terahertz metamaterial by using a specially designed nematic liquid crystal mixture [J]. Opt. Express, 2018, 26(3): 2443-2452.

    KOWERDZIEJ R, OLIFIERCZUK M, PARKA J. Thermally induced tunability of a terahertz metamaterial by using a specially designed nematic liquid crystal mixture [J]. Opt. Express, 2018, 26(3): 2443-2452.

[42] LIN X W, WU J B, HU W, et al. Self-polarizing terahertz liquid crystal phase shifter [J]. AIP Adv., 2011, 1(3): 032133.

    LIN X W, WU J B, HU W, et al. Self-polarizing terahertz liquid crystal phase shifter [J]. AIP Adv., 2011, 1(3): 032133.

[43] ALTMANN K, REUTER M, GARBAT K, et al. Polymer stabilized liquid crystal phase shifter for terahertz waves [J]. Opt. Express, 2013, 21(10): 12395-12400.

    ALTMANN K, REUTER M, GARBAT K, et al. Polymer stabilized liquid crystal phase shifter for terahertz waves [J]. Opt. Express, 2013, 21(10): 12395-12400.

[44] YANG C S, TANG T T, CHEN P H, et al. Voltage-controlled liquid-crystal terahertz phase shifter with indium-tin-oxide nanowhiskers as transparent electrodes [J]. Opt. Lett., 2014, 39(8): 2511-2513.

    YANG C S, TANG T T, CHEN P H, et al. Voltage-controlled liquid-crystal terahertz phase shifter with indium-tin-oxide nanowhiskers as transparent electrodes [J]. Opt. Lett., 2014, 39(8): 2511-2513.

[45] BENOR A, TAKIZAWA S Y, PREZ-BOLVAR C, et al. Efficiency improvement of fluorescent OLEDs by tuning the working function of PEDOT∶PSS using UV-ozone exposure [J]. Org. Electron., 2010, 11(5): 938-945.

    BENOR A, TAKIZAWA S Y, PREZ-BOLVAR C, et al. Efficiency improvement of fluorescent OLEDs by tuning the working function of PEDOT∶PSS using UV-ozone exposure [J]. Org. Electron., 2010, 11(5): 938-945.

[46] WANG L, LIN X W, HU W, et al. Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes [J]. Light Sci. Appl., 2015, 4(2): e253.

    WANG L, LIN X W, HU W, et al. Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes [J]. Light Sci. Appl., 2015, 4(2): e253.

[47] WANG L, LIN X W, LIANG X, et al. Large birefringence liquid crystal material in terahertz range [J]. Opt. Mater. Express, 2012, 2(10): 1314-1319.

    WANG L, LIN X W, LIANG X, et al. Large birefringence liquid crystal material in terahertz range [J]. Opt. Mater. Express, 2012, 2(10): 1314-1319.

[48] WEI T, CHEN P, TANG M J, et al. Liquid-crystal-mediated active waveguides toward programmable integrated optics [J]. Adv. Opt. Mater., 2020, doi: 10.1002/adom.201902033.

    WEI T, CHEN P, TANG M J, et al. Liquid-crystal-mediated active waveguides toward programmable integrated optics [J]. Adv. Opt. Mater., 2020, doi: 10.1002/adom.201902033.

[49] WEI B Y, CHEN P, GE S J, et al. Liquid crystal depolarizer based on photoalignment technology [J]. Photonics Res., 2016, 4(2): 70-73.

    WEI B Y, CHEN P, GE S J, et al. Liquid crystal depolarizer based on photoalignment technology [J]. Photonics Res., 2016, 4(2): 70-73.

[50] SASAKI T, NODA K, KAWATSUKI N, et al. Universal polarization terahertz phase controllers using randomly aligned liquid crystal cells with graphene electrodes [J]. Opt. Lett., 2015, 40(7): 1544-1547.

    SASAKI T, NODA K, KAWATSUKI N, et al. Universal polarization terahertz phase controllers using randomly aligned liquid crystal cells with graphene electrodes [J]. Opt. Lett., 2015, 40(7): 1544-1547.

[51] JI Y Y, FAN F, WANG X H, et al. Broadband controllable terahertz quarter-wave plate based on graphene gratings with liquid crystals [J]. Opt. Express, 2018, 26(10): 12852-12862.

    JI Y Y, FAN F, WANG X H, et al. Broadband controllable terahertz quarter-wave plate based on graphene gratings with liquid crystals [J]. Opt. Express, 2018, 26(10): 12852-12862.

[52] YANG C S, SHIH F C, PAN R P, et al. Liquid-crystal-enabled electrically tunable terahertz achromatic-wave plate [C]//Proceedings of 2016 41st International Conference on Infrared, Millimeter, and Terahertz Waves. Copenhagen, Denmark: IEEE, 2016: 1-2.

    YANG C S, SHIH F C, PAN R P, et al. Liquid-crystal-enabled electrically tunable terahertz achromatic-wave plate [C]//Proceedings of 2016 41st International Conference on Infrared, Millimeter, and Terahertz Waves. Copenhagen, Denmark: IEEE, 2016: 1-2.

[53] WANG L, GE S J, HU W, et al. Tunable reflective liquid crystal terahertz waveplates [J]. Opt. Mater. Express, 2017, 7(6): 2023-2029.

    WANG L, GE S J, HU W, et al. Tunable reflective liquid crystal terahertz waveplates [J]. Opt. Mater. Express, 2017, 7(6): 2023-2029.

[54] ZOGRAFOPOULOS D C, FERRARO A, ISIC G, et al. Tunable terahertz metamaterials based on nematic liquid crystals [C]//Proceedings of 2016 41st International Conference on Infrared, Millimeter, and Terahertz Waves. Copenhagen, Denmark: IEEE, 2016: 1-2.

    ZOGRAFOPOULOS D C, FERRARO A, ISIC G, et al. Tunable terahertz metamaterials based on nematic liquid crystals [C]//Proceedings of 2016 41st International Conference on Infrared, Millimeter, and Terahertz Waves. Copenhagen, Denmark: IEEE, 2016: 1-2.

[55] JI W, LEE C H, CHEN P, et al. Meta-q-plate for complex beam shaping [J]. Sci. Rep., 2016, 6: 25528.

    JI W, LEE C H, CHEN P, et al. Meta-q-plate for complex beam shaping [J]. Sci. Rep., 2016, 6: 25528.

[56] CHEN P, LU Y Q, HU W. Beam shaping via photopatterned liquid crystals [J]. Liq. Cryst., 2016, 43(13/15): 2051-2061.

    CHEN P, LU Y Q, HU W. Beam shaping via photopatterned liquid crystals [J]. Liq. Cryst., 2016, 43(13/15): 2051-2061.

[57] WEI B Y, HU W, MING Y, et al. Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals [J]. Adv. Mater., 2014, 26(10): 1590-1595.

    WEI B Y, HU W, MING Y, et al. Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals [J]. Adv. Mater., 2014, 26(10): 1590-1595.

[58] CHEN P, MA L L, HU W, et al. Chirality invertible superstructure mediated active planar optics [J]. Nat. Commun., 2019, 10(1): 2518.

    CHEN P, MA L L, HU W, et al. Chirality invertible superstructure mediated active planar optics [J]. Nat. Commun., 2019, 10(1): 2518.

[59] CHEN P, MA L L, DUAN W, et al. Digitalizing self-assembled chiral superstructures for optical vortex processing [J]. Adv. Mater., 2018, 30(10): 1705865.

    CHEN P, MA L L, DUAN W, et al. Digitalizing self-assembled chiral superstructures for optical vortex processing [J]. Adv. Mater., 2018, 30(10): 1705865.

[60] BERRY M V. The adiabatic phase and Pancharatnam's phase for polarized light [J]. J. Mod. Opt., 1987, 34(11): 1401-1407.

    BERRY M V. The adiabatic phase and Pancharatnam's phase for polarized light [J]. J. Mod. Opt., 1987, 34(11): 1401-1407.

[61] 陈鹏, 徐然, 胡伟, 等.基于光取向液晶的光场调控技术[J].光学学报, 2016, 36(10): 1026005.

    陈鹏, 徐然, 胡伟, 等.基于光取向液晶的光场调控技术[J].光学学报, 2016, 36(10): 1026005.

    CHEN P, XU R, HU W, et al. Beam shaping based on photopatterned liquid crystals [J]. Acta Opt. Sin., 2016, 36(10): 1026005. (in Chinese)

    CHEN P, XU R, HU W, et al. Beam shaping based on photopatterned liquid crystals [J]. Acta Opt. Sin., 2016, 36(10): 1026005. (in Chinese)

[62] WU H, HU W, HU H C, et al. Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system [J]. Opt. Express, 2012, 20(15): 16684-16689.

    WU H, HU W, HU H C, et al. Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system [J]. Opt. Express, 2012, 20(15): 16684-16689.

[63] WEI B Y, LIU S, CHEN P, et al. Vortex Airy beams directly generated via liquid crystal q-Airy-plates [J]. Appl. Phys. Lett., 2018, 112(12): 121101.

    WEI B Y, LIU S, CHEN P, et al. Vortex Airy beams directly generated via liquid crystal q-Airy-plates [J]. Appl. Phys. Lett., 2018, 112(12): 121101.

[64] DUAN W, CHEN P, GE S J, et al. Helicity-dependent forked vortex lens based on photo-patterned liquid crystals [J]. Opt. Express, 2017, 25(13): 14059-14064.

    DUAN W, CHEN P, GE S J, et al. Helicity-dependent forked vortex lens based on photo-patterned liquid crystals [J]. Opt. Express, 2017, 25(13): 14059-14064.

[65] CHEN P, GE S J, DUAN W, et al. Digitalized geometric phases for parallel optical spin and orbital angular momentum encoding [J]. ACS Photonics, 2017, 4(6): 1333-1338.

    CHEN P, GE S J, DUAN W, et al. Digitalized geometric phases for parallel optical spin and orbital angular momentum encoding [J]. ACS Photonics, 2017, 4(6): 1333-1338.

[66] TANG M J, CHEN P, ZHANG W L, et al. Integrated and reconfigurable optical paths based on stacking optical functional films [J]. Opt. Express, 2016, 24(22): 25510-25514.

    TANG M J, CHEN P, ZHANG W L, et al. Integrated and reconfigurable optical paths based on stacking optical functional films [J]. Opt. Express, 2016, 24(22): 25510-25514.

[67] WEI B Y, CHEN P, GE S J, et al. Generation of self-healing and transverse accelerating optical vortices [J]. Appl. Phys. Lett., 2016, 109(12): 121105.

    WEI B Y, CHEN P, GE S J, et al. Generation of self-healing and transverse accelerating optical vortices [J]. Appl. Phys. Lett., 2016, 109(12): 121105.

[68] GE S J, CHEN P, SHEN Z X, et al. Terahertz vortex beam generator based on a photopatterned large birefringence liquid crystal [J]. Opt. Express, 2017, 25(11): 12349-12356.

    GE S J, CHEN P, SHEN Z X, et al. Terahertz vortex beam generator based on a photopatterned large birefringence liquid crystal [J]. Opt. Express, 2017, 25(11): 12349-12356.

[69] FRANKE-ARNOLD S, ALLEN L, PADGETT M. Advances in optical angular momentum [J]. Laser Photonics Rev., 2008, 2(4): 299-313.

    FRANKE-ARNOLD S, ALLEN L, PADGETT M. Advances in optical angular momentum [J]. Laser Photonics Rev., 2008, 2(4): 299-313.

[70] YAO A M, PADGETT M J. Orbital angular momentum: origins, behavior and applications [J]. Adv. Opt. Photonics, 2011, 3(2): 161-204.

    YAO A M, PADGETT M J. Orbital angular momentum: origins, behavior and applications [J]. Adv. Opt. Photonics, 2011, 3(2): 161-204.

[71] GE S J, SHEN Z X, CHEN P, et al. Generating, separating and polarizing terahertz vortex beams via liquid crystals with gradient-rotation directors [J]. Crystals, 2017, 7(10): 314.

    GE S J, SHEN Z X, CHEN P, et al. Generating, separating and polarizing terahertz vortex beams via liquid crystals with gradient-rotation directors [J]. Crystals, 2017, 7(10): 314.

[72] SHEN Z X, ZHOU S H, GE S J, et al. Liquid crystal tunable terahertz lens with spin-selected focusing property [J]. Opt. Express, 2019, 27(6): 8800-8807.

    SHEN Z X, ZHOU S H, GE S J, et al. Liquid crystal tunable terahertz lens with spin-selected focusing property [J]. Opt. Express, 2019, 27(6): 8800-8807.

[73] CHENG Q Q, MA M L, YU D, et al. Broadband achromatic metalens in terahertz regime [J]. Sci. Bull., 2019, 64(20): 1525-1531.

    CHENG Q Q, MA M L, YU D, et al. Broadband achromatic metalens in terahertz regime [J]. Sci. Bull., 2019, 64(20): 1525-1531.

[74] SHEN Z X, TANG M J, CHEN P, et al. Planar terahertz photonics mediated by liquid crystal polymers [J]. Adv. Opt. Mater., 2020, 8(7): 1902124.

    SHEN Z X, TANG M J, CHEN P, et al. Planar terahertz photonics mediated by liquid crystal polymers [J]. Adv. Opt. Mater., 2020, 8(7): 1902124.

[75] 王磊, 肖芮文, 葛士军, 等.太赫兹液晶材料与器件研究进展[J].物理学报, 2019, 68(8): 084205.

    王磊, 肖芮文, 葛士军, 等.太赫兹液晶材料与器件研究进展[J].物理学报, 2019, 68(8): 084205.

    WANG L, XIAO R W, GE S J, et al. Research progress of terahertz liquid crystal materials and devices [J]. Acta Phys. Sin., 2019, 68(8): 084205. (in Chinese)

    WANG L, XIAO R W, GE S J, et al. Research progress of terahertz liquid crystal materials and devices [J]. Acta Phys. Sin., 2019, 68(8): 084205. (in Chinese)

[76] YEN T J, PADILLA W J, FANG N, et al. Terahertz magnetic response from artificial materials [J]. Science, 2004, 303(5663): 1494-1496.

    YEN T J, PADILLA W J, FANG N, et al. Terahertz magnetic response from artificial materials [J]. Science, 2004, 303(5663): 1494-1496.

[77] ZHANG S, PARK Y S, LI J, et al. Negative refractive index in chiral metamaterials [J]. Phys. Rev. Lett., 2009, 102(2): 023901.

    ZHANG S, PARK Y S, LI J, et al. Negative refractive index in chiral metamaterials [J]. Phys. Rev. Lett., 2009, 102(2): 023901.

[78] CAI W S, CHETTIAR U K, KILDISHEV A V, et al. Optical cloaking with metamaterials [J]. Nat. Photonics, 2007, 1(4): 224-227.

    CAI W S, CHETTIAR U K, KILDISHEV A V, et al. Optical cloaking with metamaterials [J]. Nat. Photonics, 2007, 1(4): 224-227.

[79] SCHURIG D, MOCK J J, JUSTICE B J, et al. Metamaterial electromagnetic cloak at microwave frequencies [J]. Science, 2006, 314(5801): 977-980.

    SCHURIG D, MOCK J J, JUSTICE B J, et al. Metamaterial electromagnetic cloak at microwave frequencies [J]. Science, 2006, 314(5801): 977-980.

[80] MA H F, CUI T J. Three-dimensional broadband ground-plane cloak made of metamaterials [J]. Nat. Commun., 2010, 1: 21.

    MA H F, CUI T J. Three-dimensional broadband ground-plane cloak made of metamaterials [J]. Nat. Commun., 2010, 1: 21.

[81] YANG Y H, JING L Q, ZHENG B, et al. Full-polarization 3D metasurface cloak with preserved amplitude and phase [J]. Adv. Mater., 2016, 28(32): 6866-6871.

    YANG Y H, JING L Q, ZHENG B, et al. Full-polarization 3D metasurface cloak with preserved amplitude and phase [J]. Adv. Mater., 2016, 28(32): 6866-6871.

[82] WEN D D, YUE F Y, LI G X, et al. Helicity multiplexed broadband metasurface holograms [J]. Nat. Commun., 2015, 6: 8241.

    WEN D D, YUE F Y, LI G X, et al. Helicity multiplexed broadband metasurface holograms [J]. Nat. Commun., 2015, 6: 8241.

[83] YAO Y, SHANKAR R, KATS M A, et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators [J]. Nano Lett., 2014, 14(11): 6526-6532.

    YAO Y, SHANKAR R, KATS M A, et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators [J]. Nano Lett., 2014, 14(11): 6526-6532.

[84] MANJAPPA M, PITCHAPPA P, SINGH N, et al. Reconfigurable MEMS Fano metasurfaces with multiple-input-output states for logic operations at terahertz frequencies [J]. Nat. Commun., 2018, 9(1): 4056.

    MANJAPPA M, PITCHAPPA P, SINGH N, et al. Reconfigurable MEMS Fano metasurfaces with multiple-input-output states for logic operations at terahertz frequencies [J]. Nat. Commun., 2018, 9(1): 4056.

[85] ZHAO X G, SCHALCH J, ZHANG J D, et al. Electromechanically tunable metasurface transmission waveplate at terahertz frequencies [J]. Optica, 2018, 5(3): 303-310.

    ZHAO X G, SCHALCH J, ZHANG J D, et al. Electromechanically tunable metasurface transmission waveplate at terahertz frequencies [J]. Optica, 2018, 5(3): 303-310.

[86] DRISCOLL T, KIM H T, CHAE B G, et al. Memory metamaterials [J]. Science, 2009, 325(5947): 1518-1521.

    DRISCOLL T, KIM H T, CHAE B G, et al. Memory metamaterials [J]. Science, 2009, 325(5947): 1518-1521.

[87] CHEN H T, PADILLA W J, ZIDE J M O, et al. Active terahertz metamaterial devices [J]. Nature, 2006, 444(7119): 597-600.

    CHEN H T, PADILLA W J, ZIDE J M O, et al. Active terahertz metamaterial devices [J]. Nature, 2006, 444(7119): 597-600.

[88] GU J Q, SINGH R, LIU X J, et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials [J]. Nat. Commun., 2012, 3: 1151.

    GU J Q, SINGH R, LIU X J, et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials [J]. Nat. Commun., 2012, 3: 1151.

[89] SAVO S, SHREKENHAMER D, PADILLA W J. Liquid crystal metamaterial absorber spatial light modulator for THz applications [J]. Adv. Opt. Mater., 2014, 2(3): 275-279.

    SAVO S, SHREKENHAMER D, PADILLA W J. Liquid crystal metamaterial absorber spatial light modulator for THz applications [J]. Adv. Opt. Mater., 2014, 2(3): 275-279.

[90] CHEN C C, CHIANG W F, TSAI M C, et al. Continuously tunable and fast-response terahertz metamaterials using in-plane-switching dual-frequency liquid crystal cells [J]. Opt. Lett., 2015, 40(9): 2021-2024.

    CHEN C C, CHIANG W F, TSAI M C, et al. Continuously tunable and fast-response terahertz metamaterials using in-plane-switching dual-frequency liquid crystal cells [J]. Opt. Lett., 2015, 40(9): 2021-2024.

[91] GU J Q, SINGH R, TIAN Z, et al. Terahertz superconductor metamaterial [J]. Appl. Phys. Lett., 2010, 97(7): 071102.

    GU J Q, SINGH R, TIAN Z, et al. Terahertz superconductor metamaterial [J]. Appl. Phys. Lett., 2010, 97(7): 071102.

[92] WU J B, JIN B B, WAN J, et al. Superconducting terahertz metamaterials mimicking electromagnetically induced transparency [J]. Appl. Phys. Lett., 2011, 99(16): 161113.

    WU J B, JIN B B, WAN J, et al. Superconducting terahertz metamaterials mimicking electromagnetically induced transparency [J]. Appl. Phys. Lett., 2011, 99(16): 161113.

[93] JU L, GENG B S, HORNG J, et al. Graphene plasmonics for tunable terahertz metamaterials [J]. Nat. Nanotechnol., 2011, 6(10): 630-634.

    JU L, GENG B S, HORNG J, et al. Graphene plasmonics for tunable terahertz metamaterials [J]. Nat. Nanotechnol., 2011, 6(10): 630-634.

[94] LEE S H, CHOI M, KIM T T, et al. Switching terahertz waves with gate-controlled active graphene metamaterials [J]. Nat. Mater., 2012, 11(11): 936-941.

    LEE S H, CHOI M, KIM T T, et al. Switching terahertz waves with gate-controlled active graphene metamaterials [J]. Nat. Mater., 2012, 11(11): 936-941.

[95] SHREKENHAMER D, CHEN W C, PADILLA W J. Liquid crystal tunable metamaterial absorber [J]. Phys. Rev. Lett., 2013, 110(17): 177403.

    SHREKENHAMER D, CHEN W C, PADILLA W J. Liquid crystal tunable metamaterial absorber [J]. Phys. Rev. Lett., 2013, 110(17): 177403.

[96] YANG L, FAN F, CHEN M, et al. Active terahertz metamaterials based on liquid-crystal induced transparency and absorption [J]. Opt. Commun., 2017, 382: 42-48.

    YANG L, FAN F, CHEN M, et al. Active terahertz metamaterials based on liquid-crystal induced transparency and absorption [J]. Opt. Commun., 2017, 382: 42-48.

[97] WANG L, GE S J, HU W, et al. Graphene-assisted high-efficiency liquid crystal tunable terahertz metamaterial absorber [J]. Opt. Express, 2017, 25(20): 23873-23879.

    WANG L, GE S J, HU W, et al. Graphene-assisted high-efficiency liquid crystal tunable terahertz metamaterial absorber [J]. Opt. Express, 2017, 25(20): 23873-23879.

[98] WANG J, TIAN H, WANG Y, et al. Liquid crystal terahertz modulator with plasmon-induced transparency metamaterial [J]. Opt. Express, 2018, 26(5): 5769-5776.

    WANG J, TIAN H, WANG Y, et al. Liquid crystal terahertz modulator with plasmon-induced transparency metamaterial [J]. Opt. Express, 2018, 26(5): 5769-5776.

[99] SHEN Z X, ZHOU S H, GE S J, et al. Liquid-crystal-integrated metadevice: towards active multifunctional terahertz wave manipulations [J]. Opt. Lett., 2018, 43(19): 4695-4698.

    SHEN Z X, ZHOU S H, GE S J, et al. Liquid-crystal-integrated metadevice: towards active multifunctional terahertz wave manipulations [J]. Opt. Lett., 2018, 43(19): 4695-4698.

[100] SHEN Z X, ZHOU S H, GE S J, et al. Liquid crystal enabled dynamic cloaking of terahertz Fano resonators [J]. Appl. Phys. Lett., 2019, 114(4): 041106.

    SHEN Z X, ZHOU S H, GE S J, et al. Liquid crystal enabled dynamic cloaking of terahertz Fano resonators [J]. Appl. Phys. Lett., 2019, 114(4): 041106.

[101] SAUTTER J, STAUDE I, DECKER M, et al. Active tuning of all-dielectric metasurfaces [J]. ACS Nano, 2015, 9(4): 4308-4315.

    SAUTTER J, STAUDE I, DECKER M, et al. Active tuning of all-dielectric metasurfaces [J]. ACS Nano, 2015, 9(4): 4308-4315.

[102] KOMAR A, FANG Z, BOHN J, et al. Electrically tunable all-dielectric optical metasurfaces based on liquid crystals [J]. Appl. Phys. Lett., 2017, 110(7): 071109.

    KOMAR A, FANG Z, BOHN J, et al. Electrically tunable all-dielectric optical metasurfaces based on liquid crystals [J]. Appl. Phys. Lett., 2017, 110(7): 071109.

[103] KOMAR A, PANIAGUA-DOMINGUEZ R, MIROSHNICHENKO A,et al. Dynamic beam switching by liquid crystal tunable dielectric metasurfaces [J]. ACS Photonics, 2018, 5(5): 1742-1748.

    KOMAR A, PANIAGUA-DOMINGUEZ R, MIROSHNICHENKO A,et al. Dynamic beam switching by liquid crystal tunable dielectric metasurfaces [J]. ACS Photonics, 2018, 5(5): 1742-1748.

[104] JAHANI S, JACOB Z. All-dielectric metamaterials [J].Nat. Nanotechnol., 2016, 11(1): 23-26.

    JAHANI S, JACOB Z. All-dielectric metamaterials [J].Nat. Nanotechnol., 2016, 11(1): 23-26.

[105] ZHANG H F, ZHANG X Q, XU Q, et al. Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime [J]. Photonics Res., 2018, 6(1): 24-29.

    ZHANG H F, ZHANG X Q, XU Q, et al. Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime [J]. Photonics Res., 2018, 6(1): 24-29.

[106] ZHOU S H, SHEN Z X, KANG R Y, et al. Liquid crystal tunable dielectric metamaterial absorber in the terahertz range [J]. Appl. Sci., 2018, 8(11): 2211.

    ZHOU S H, SHEN Z X, KANG R Y, et al. Liquid crystal tunable dielectric metamaterial absorber in the terahertz range [J]. Appl. Sci., 2018, 8(11): 2211.

申彦春, 王金兰, 王巧莲, 沈志雄, 胡伟. 基于液晶的太赫兹波前调控器件研究进展[J]. 液晶与显示, 2020, 35(7): 762. SHEN Yan-chun, WANG Jin-lan, WANG Qiao-lian, SHEN Zhi-xiong, HU Wei. Progress of liquid crystal based terahertz wavefront modulators[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(7): 762.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!