量子电子学报, 2018, 35 (2): 184, 网络出版: 2018-04-23   

双模光场与Λ型三能级原子量子纠缠的精确解

Exact solution of quantum entanglement of two-mode field interacting withΛ-type three-level atom
作者单位
1 北京交通大学海滨学院, 河北 黄骅 061199
2 西南科技大学理学院, 四川 绵阳 621010
摘要
在非旋波近似下,对双模相干态光场与Λ 型三能级原子相互作用系统的量子纠缠进行了精确求解,讨论了平均光子数及失谐量对量子 纠缠演化的影响。数值计算结果表明:量子纠缠的周期随平均光子数的增大而增大;量子纠缠最大值 随失谐的增大逐渐降低,且达到最大值所需时间逐渐增加;当失谐较大时,量子纠缠在较短时间内具 有较好的周期性;随着平均光子数及失谐的增大,虚光子效应使量子纠缠演化曲线小锯齿状的振荡逐渐增强。
Abstract
Quantum entanglement of a two-mode coherent field interacting with a Λ-type three-level atom system is solved exactly without rotating wave approximation, and the influence of mean photon number and detuning on quantum entanglement evolution are discussed. Numerical results show that the quantum entanglement period increases with the increasing of mean photon number. The quantum entanglement maximum decreases gradually with increasing of detuning, and the time reaching the maximum increases gradually. When the detuning is relative large, the quantum entanglement has better periodicity in a relatively short period. The small zigzag shaped oscillation of quantum entanglement evolution curve due to virtual photon effect is gradually enhanced with the increasing of mean photon number and detuning.
参考文献

[1] Boschi D, Branca S, Martini F D, et al. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Physics, 1997, 80(6): 1121-1125.

[2] Zhong Xiaolin, Lin Gongwei, Zhou Fengxue, et al. Two-atom distributed entanglement by detecting the transmission spectrum of a coupled-cavity quantum electrodynamics system[J]. Chin. Opt. Lett., 2015, 13(9): 092701.

[3] Obada A S F, Ahmed M M A, Faramawy F K, et al. Entropy and entanglement of the nonlinear Jaynes-Cummings model[J]. Chin. J. Phys., 2004, 42(1): 79-91.

[4] Hines A P, Dawson C M, Mckenzie R H, et al. Entanglement and bifurcations in Jahn-Teller models[J]. Phys. Rev. A, 2004, 70(2): 022303.

[5] Phoenix S J D, Knight P L. Fluctuation and entropy in models of quantum optical resonance[J]. Ann. Phys., 1998, 18(2): 381-407.

[6] Phoenix S J D, Knight P L. Establishment of an entangled atom-field state in the Jaynes-Cummings model[J]. Phys. Rev. A, 1991, 44(9): 6023-6029.

[7] Hu Yaohua. Influence of Stark shift on entropy and entanglement in J-C model with mixed states[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2012, 29(4): 441-447 (in Chinese).

[8] Guo Caili, Sachuerfu, Li Bin. Entanglement characteristics in system of two-level atom of multi-photon transition interacting with NPS light field[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2017, 34(2): 190-194 (in Chinese).

[9] Mohammadi H, Akhtarshenas S J, Kheirandish F. Influence of dephasing on the entanglement teleportation via a two-qubit Heisenberg XYZ system[J]. Eur. Phys. J D, 2011, 62(3): 439-447.

[10] Schachenmayer J, Lanyon B P, Roos C F, et al. Entanglement growth in quench dynamics with variable range interactions[J]. Phys. Rev. X, 2013, 3(3): 031015.

[11] Hu Yaohua, Liu Qiang. Control of the thermal field with time-varying frequency on entropy exchange in the J-C model with mixed states[J]. Acta Optica Sinnica (光学学报), 2013, 33(12): 1227002 (in Chinese).

[12] Lu Daoming. Entanglement properties in the system of atoms interacting with coupled cavities via a two-photon hopping interaction[J]. Acta Optica Sinica (光学学报), 2012, 32(2): 0227001 (in Chinese).

[13] Zou Yan, Li Yongping. Entropy properties in the system of a V type three-level atom interacting with the two-mode odd-even entangled coherent field[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2008, 25(5): 582-587 (in Chinese).

[14] Gunter G, Anappara A A, Hees J, et al. Sub-cycle switch-on of ultrastrong light-matter interaction[J]. Nature, 2009, 458(7235): 178-181.

[15] Hausinger J, Grifoni M. Qubit-oscillator system: An analytical treatment of the ultrastrong coupling regime[J]. Phys. Rev. A, 2010, 82(6): 13289.

[16] Chen Qinghu, Liu Tao, Zhang Yuyu, et al. Solutions to the Jaynes-Cummings model without the rotating-wave approximation[J]. Europhys. Lett., 2011, 9(1): 14003.

[17] Duan Liwei, Xie Youfei, Braak D, et al. Two-photon Rabi model: Analytic solutions and spectral collapse[J]. J. Phys. A: Math. Theor., 2016, 49(3): 464002.

[18] Ren Xuezao, Jiang Daolai, Cong Honglu, et al. Exact solution of entanglement of the double Jaynes-Cummings model without rotating wave approximation[J]. Chin. Phys. B, 2010, 19(9): 090309.

[19] Ren Xuezao, Cong Honglu, Liao Xu, et al. Level crossing in a two-photon Jaynes-Cummings model[J]. Chin. Phys. B, 2012, 21(5): 054210.

[20] Cong Honglu, Ren Xuezao, Jiang Daolai, et al. An exact solution of evolution of the field entropy in a system of three-level cascade type atom interacting with single-mode coherent field[J]. Acta Physica Sinica (物理学报), 2010, 59(5): 3221-322(in Chinese).

[21] Cong Honglu, Tang Duochang, Liu Xuehua, et al. Quantum properties of the binomial field interaction with a cascade three-level atom beyond the rotating wave approximation[J]. Acta Photonica Sinica (光子学报), 2012, 41(9): 1098-1103 (in Chinese).

[22] Cong Honglu, Cheng Shuang, Liu Xuehua, et al. Quantum entanglement of a two-mode field interacting with a cascade three-level atom without rotating wave approximation[J]. Acta Photonica Sinica (光子学报), 2015, 44(9): 0927003 (in Chinese).

[23] Cong Honglu, Ren Xuezao, Liao Xu. Quantum properties of two-photon Jaynes-Cummings model without rotating wave approximation[J]. Acta Optica Sinica (光学学报), 2015, 35(7): 23-28 (in Chinese).

[24] Cong Honglu, Ren Xuezao. Exact solution for quantum properties of the binomial states field interacting with the Λ-type atom[J]. Acta Optica Sinica (光学学报), 2017, 37(2): 0227001 (in Chinese).

丛红璐, 刘雪华, 赵玉娜, 于娜, 任学藻. 双模光场与Λ型三能级原子量子纠缠的精确解[J]. 量子电子学报, 2018, 35(2): 184. CONG Honglu, LIU Xuehua, ZHAO Yu′na, YU Na, REN Xuezao. Exact solution of quantum entanglement of two-mode field interacting withΛ-type three-level atom[J]. Chinese Journal of Quantum Electronics, 2018, 35(2): 184.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!