Frontiers of Optoelectronics, 2017, 10 (3): 211, 网络出版: 2018-01-17   

Review of current methods of acousto-optical tomography for biomedical applications

Review of current methods of acousto-optical tomography for biomedical applications
作者单位
1 Tyndall National Institute, Lee Maltings, Dyke Parade, Cork T12 R5CP, Ireland
2 Department of Physics, University College Cork, Cork T12 YN60, Ireland
摘要
Abstract
The field of acousto-optical tomography (AOT) for medical applications began in the 1990s and has since developed multiple techniques for the detection of ultrasound-modulated light. Light becomes frequency shifted as it travels through an ultrasound beam. This “tagged” light can be detected and used for focused optical imaging. Here, we present a comprehensive overview of the techniques that have developed since around 2011 in the field of biomedical AOT. This includes how AOT has advanced by taken advantage of the research conducted in the ultrasound, as well as, the optical fields. Also, simulations and reconstruction algorithms have been formulated specifically for AOT imaging over this time period. Future progression of AOT relies on its ability to provide significant contributions to in vivo imaging for biomedical applications. We outline the challenges that AOT still faces to make in vivo imaging possible and what has been accomplished thus far, as well as possible future directions.
参考文献

[1] Wang L V. Ultrasound-mediated biophotonic imaging: a review of acousto-optical tomography and photo-acoustic tomography. Disease Markers, 2003- 2004, 19(2-3): 123-138

[2] Brillouin L.Diffusion de la lumière et des rayons X par un corps transparent homogène. Influence de l’agitation thermique. Ann. Physique (Paris), 1922, 17(88-122): 21

[3] Debye P, Sears F W. On the scattering of light by supersonic waves. Proceedings of the National Academy of Sciences of the United States of America, 1932, 18(6): 409-414

[4] Lucas R, Biquard P. Propriétés optique des milieux solides et liquides soumis aux vibrations élastiques ultra sonores. Journal of Physics, 1932, 71(10): 464-477

[5] Marks F A, Tomlinson H W, Brooksby G W. Comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination. In: Proceedings of SPIE 1888, Photon Migration and Imaging in Random Media and Tissues. 1993, 500-510

[6] Wang L, Jacques S L, Zhao X. Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media. Optics Letters, 1995, 20(6): 629-631

[7] Leutz W, Maret G. Ultrasonic modulation of multiply scattered light. Physica B, Condensed Matter, 1995, 204(1 - 4): 14-19

[8] Wang L V. Mechanisms of ultrasonic modulation of multiply scattered coherent light: an analytic model. Physical Review Letters, 2001, 87(4): 043903

[9] i C, Kim C, Lihong V W. Photoacoustic tomography and ultrasound-modulated optical tomography. In: Boas D A, Pitris C, Ramanujam N, eds. Handbook of Biomedical Optics. Boca Raton, Florida: CRC Press, 2011, 419-442

[10] Resink S G, Boccara A C, Steenbergen W. State-of-the art of acousto-optic sensing and imaging of turbid media. Journal of Biomedical Optics, 2012, 17(4): 040901

[11] Walther A, Rippe L, Lihong V W, Andersson-Engels S, Kr ll S. Is optical imaging of oxygenation at heart depth possible (submitted), 2017

[12] Elson D S, Li R, Dunsby C, Eckersley R, Tang M X. Ultrasoundmediated optical tomography: a review of current methods. Interface Focus, 2011, 1(4): 632-648

[13] Lai P, Xu X, Wang L V. Ultrasound-modulated optical tomography at new depth. Journal of Biomedical Optics, 2012, 17(6): 066006

[14] Zhang H, Sabooni M, Rippe L, Kim C, Kr ll S, Wang L V, Hemmer P R. Slow light for deep tissue imaging with ultrasound modulation. Applied Physics Letters, 2012, 100(13): 131102

[15] Suzuki Y, Lai P, Xu X, Wang L. High-sensitivity ultrasoundmodulated optical tomography with a photorefractive polymer. Optics Letters, 2013, 38(6): 899-901

[16] Lai P, Suzuki Y, Xu X, Wang L V. Exploring ultrasoundmodulated optical tomography at clinically useful depths using the photorefractive effect. In: Oraevsky A A, Wang L V, eds. Photons Plus Ultrasound: imaging and Sensing: Proceedings of SPIE. 2013, 85812X

[17] Yao G, Wang L V. Theoretical and experimental studies of ultrasound-modulated optical tomography in biological tissue. Applied Optics, 2000, 39(4): 659-664

[18] Jang M, Ruan H, Judkewitz B, Yang C. Model for estimating the penetration depth limit of the time-reversed ultrasonically encoded optical focusing technique. Optics Express, 2014, 22(5): 5787- 5807

[19] Hussain A, Daoudi K, Hondebrink E, Steenbergen W. Mapping optical fluence variations in highly scattering media by measuring ultrasonically modulated backscattered light. Journal of Biomedical Optics, 2014, 19(6): 066002

[20] Wang L V. Mechanisms of ultrasonic modulation of multiply scattered coherent light: a Monte Carlo model. Optics Letters, 2001, 26(15): 1191-1193

[21] Huynh N T, Hayes-Gill B R, Zhang F, Morgan S P. Ultrasound modulated imaging of luminescence generated within a scattering medium. Journal of Biomedical Optics, 2013, 18(2): 020505

[22] Jarrett C W, Caskey C F, Gore J C. Detection of a novel mechanism of acousto-optic modulation of incoherent light. PLoS One, 2014, 9(8): e104268

[23] Huynh N T, Ruan H, He D, Hayes-Gill B R, Morgan S P. Effect of object size and acoustic wavelength on pulsed ultrasound modulated fluorescence signals. Journal of Biomedical Optics, 2012, 17(7): 076008

[24] Wang L V, Wu H. Biomedical Optics: Principles and Imaging. New Jersey: John Wiley & Sons, 2012

[25] Sakad i S, Wang L V. Ultrasonic modulation of multiply scattered coherent light: an analytical model for anisotropically scattering media. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2002, 66(2): 026603

[26] Yao G, Wang L V. Signal dependence and noise source in ultrasound-modulated optical tomography. Applied Optics, 2004, 43(6): 1320-1326

[27] Sakad i S, Wang L V. Correlation transfer equation for ultrasound-modulated multiply scattered light. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2006, 74(3): 036618

[28] Sakad i S, Wang L V. Correlation transfer equation for multiply scattered light modulated by an ultrasonic pulse. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 2007, 24(9): 2797-2806

[29] Sakad i S, Wang L V. Modulation of multiply scattered coherent light by ultrasonic pulses: an analytical model. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2005, 72(3): 036620

[30] Alerstam E, Svensson T, Andersson-Engels S. Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration. Journal of Biomedical Optics, 2008, 13(6): 060504

[31] Leung T S, Powell S.Fast Monte Carlo simulations of ultrasoundmodulated light using a graphics processing unit. Journal of Biomedical Optics, 2010, 15(5): 055007

[32] Powell S, Leung T S. Highly parallel Monte-Carlo simulations of the acousto-optic effect in heterogeneous turbid media. Journal of Biomedical Optics, 2012, 17(4): 045002

[33] Adams MT, Cleveland R O, Roy R A. Modeling-based design and assessment of an acousto-optic guided high-intensity focused ultrasound system. Journal of Biomedical Optics, 2017, 22(1): 017001

[34] Lu M Z, Wu Y P, Shi Y, Guan Y B, Guo X L, Wan M X. Monte Carlo simulation of scattered light with shear waves generated by acoustic radiation force for acousto-optic imaging. Chinese Physics Letters, 2012, 29(12): 124302

[35] Li Y J, Huang W J, Ma F C, Wang R, Lu M Z, Wan M X. A modified Monte Carlo model of speckle tracking of shear wave induced by acoustic radiation force for acousto-optic elasticity imaging. Chinese Physics Letters, 2016, 33(11): 114301

[36] Li S, Cheng Y, Song L, Eckersley R J, Elson D S, Tang M X. Tracking shear waves in turbid medium by light: theory, simulation, and experiment. Optics Letters, 2014, 39(6): 1597- 1600

[37] Tsalach A, Schiffer Z, Ratner E, Breskin I, Zeitak R, Shechter R, Balberg M. Depth selective acousto-optic flow measurement. Biomedical Optics Express, 2015, 6(12): 4871-4886

[38] Tsalach A, Metzger Y, Breskin I, Zeitak R, Shechter R. Ultrasound modulated light blood flow measurement using intensity autocorrelation function: a Monte-Carlo simulation. In: Proceedings of SPIE 8943, Photons Plus Ultrasound: Imaging and Sensing, 2014, 89433N

[39] Hollmann J L, Horstmeyer R, Yang C, DiMarzio C A. Analysis and modeling of an ultrasound-modulated guide star to increase the depth of focusing in a turbid medium. Journal of Biomedical Optics, 2013, 18(2): 025004

[40] Hollmann J L, Horstmeyer R, Yang C, DiMarzio C A. Diffusion model for ultrasound-modulated light. Journal of Biomedical Optics, 2014, 19(3): 035005

[41] Fiolka R, Si K, Cui M. Parallel wavefront measurements in ultrasound pulse guided digital phase conjugation. Optics Express, 2012, 20(22): 24827-24834

[42] Chandran R S, Roy D, Kanhirodan R, Vasu R M, Devi C U. Ultrasound modulated optical tomography: Young’s modulus of the insonified region from measurement of natural frequency of vibration. Optics Express, 2011, 19(23): 22837-22850

[43] Chandran R S, Devaraj G, Kanhirodan R, Roy D, Vasu R M. Detection and estimation of liquid flow through a pipe in a tissuelike object with ultrasound-assisted diffuse correlation spectroscopy. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2015, 32(10): 1888-1897

[44] Chandran R S, Sarkar S, Kanhirodan R, Roy D, Vasu R M. Diffusing-wave spectroscopy in an inhomogeneous object: local viscoelastic spectra from ultrasound-assisted measurement of correlation decay arising from the ultrasound focal volume. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2014, 90(1): 012303

[45] Yang Q, Xu X, Lai P, Xu D, Wang L V. Time-reversed ultrasonically encoded optical focusing using two ultrasonic transducers for improved ultrasonic axial resolution. Journal of Biomedical Optics, 2013, 18(11): 110502

[46] Lai P, Roy R A, Murray T W. Quantitative characterization of turbid media using pressure contrast acousto-optic imaging. Optics Letters, 2009, 34(18): 2850-2852

[47] Murray T W, Lai P, Roy R A. Measuring tissue properties and monitoring therapeutic responses using acousto-optic imaging. Annals of Biomedical Engineering, 2012, 40(2): 474-485

[48] Ruan H, Mather M L, Morgan S P. Pulse inversion ultrasound modulated optical tomography. Optics Letters, 2012, 37(10): 1658-1660

[49] Ruan H, Mather M L, Morgan S P. Pulsed ultrasound modulated optical tomography with harmonic lock-in holography detection. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2013, 30(7): 1409-1416

[50] Ruan H, Mather M L, Morgan S P. Pulsed ultrasound modulated optical tomography utilizing the harmonic response of lock-in detection. Applied Optics, 2013, 52(19): 4755-4762

[51] Laudereau J B, Grabar A A, Tanter M, Gennisson J L, Ramaz F. Ultrafast acousto-optic imaging with ultrasonic plane waves. Optics Express, 2016, 24(4): 3774-3789

[52] Lai P, McLaughlan J R, Draudt A B, Murray T W, Cleveland R O, Roy R A. Real-time monitoring of high-intensity focused ultrasound lesion formation using acousto-optic sensing. Ultrasound in Medicine & Biology, 2011, 37(2): 239-252

[53] Ruan H, Jang M, Yang C. Optical focusing inside scattering media with time-reversed ultrasound microbubble encoded light. Nature Communications, 2015, 6: 8968

[54] Ruan H, Mather M L, Morgan S P. Ultrasound modulated optical tomography contrast enhancement with non-linear oscillation of microbubbles. Quantitative Imaging in Medicine and Surgery, 2015, 5(1): 9-16

[55] Liu Y, Feshitan J A, Wei M Y, Borden M A, Yuan B. Ultrasoundmodulated fluorescence based on fluorescent microbubbles. Journal of Biomedical Optics, 2014, 19(8): 085005

[56] Li R, Elson D S, Dunsby C, Eckersley R, Tang M X. Effects of acoustic radiation force and shear waves for absorption and stiffness sensing in ultrasound modulated optical tomography. Optics Express, 2011, 19(8): 7299-7311

[57] Cheng Y, Li R, Li S, Dunsby C, Eckersley R J, Elson D S, Tang M X. Shear wave elasticity imaging based on acoustic radiation force and optical detection. Ultrasound in Medicine & Biology, 2012, 38 (9): 1637-1645

[58] Cheng Y, Li S, Eckersley R J, Elson D S, Tang M X. Viscosity measurement based on shear-wave laser speckle contrast analysis. Journal of Biomedical Optics, 2013, 18(12): 121511

[59] Cheng Y, Li S, Eckersley R J, Elson D S, Tang M X. Detecting tissue optical and mechanical properties with an ultrasound modulated optical imaging system in reflection detection geometry. Biomedical Optics Express, 2015, 6(1): 63-71

[60] Li S, Cheng Y, Eckersley R J, Elson D S, Tang M X. Dual shear wave induced laser speckle contrast signal and the improvement in shear wave speed measurement. Biomedical Optics Express, 2015, 6(6): 1954-1962

[61] Li J, Wang L V. Methods for parallel-detection-based ultrasoundmodulated optical tomography. Applied Optics, 2002, 41(10): 2079-2084

[62] Bratchenia A, Molenaar R, Kooyman R P H. Towards quantitative acousto-optic imaging in tissue. Laser Physics, 2011, 21(3): 601- 607

[63] Resink S G, Hondebrink E, Steenbergen W. Towards acousto-optic tissue imaging with nanosecond laser pulses. Optics Express, 2014, 22(3): 3564-3571

[64] Resink S G, Steenbergen W. Tandem-pulsed acousto-optics: an analytical framework of modulated high-contrast speckle patterns. Physics in Medicine and Biology, 2015, 60(11): 4371-4382

[65] Resink S, Hondebrink E, Steenbergen W. Solving the speckle decorrelation challenge in acousto-optic sensing using tandem nanosecond pulses within the ultrasound period. Optics Letters, 2014, 39(22): 6486-6489

[66] Zhang Q, Mather M L, Morgan S P. Numerical investigation of the mechanisms of ultrasound-modulated bioluminescence tomography. IEEE Transactions on Bio-medical Engineering, 2015, 62(9): 2135-2143

[67] Barjean K, Contreras K, Laudereau J B, Tinet é, Ettori D, Ramaz F, Tualle J M. Fourier transform acousto-optic imaging with a custom-designed CMOS smart-pixels array. Optics Letters, 2015, 40(5): 705-708

[68] Barjean K, Ramaz F, Tualle J M. Theoretical study of Fouriertransform acousto-optic imaging. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2016, 33(5): 854- 862

[69] Liu Y, Shen Y, Ma C, Shi J, Wang L V. Lock-in camera based heterodyne holography for ultrasound-modulated optical tomography inside dynamic scattering media. Applied Physics Letters, 2016, 108(23): 231106

[70] Farahi S, Benoit E, Grabar A A, Huignard J P, Ramaz F. Time resolved three-dimensional acousto-optic imaging of thick scattering media. Optics Letters, 2012, 37(13): 2754-2756

[71] Jayet B, Huignard J P, Ramaz F. Fast wavefront adaptive holography in Nd:YVO4 for ultrasound optical tomography imaging. Optics Express, 2014, 22(17): 20622-20633

[72] à La Guillaume E B, Bortolozzo U, Huignard J P, Residori S, Ramaz F. Dynamic ultrasound modulated optical tomography by self-referenced photorefractive holography. Optics Letters, 2013, 38(3): 287-289

[73] Devaux F, Huignard J P, Ramaz F. Modelization and optimized speckle detection scheme in photorefractive self-referenced acousto-optic imaging. Optics Express, 2014, 22(9): 10682-10692

[74] Laudereau J B, à La Guillaume E B, Servois V, Mariani P, Grabar A A, Tanter M, Gennisson J L, Ramaz F. Multi-modal acoustooptic/ ultrasound imaging of ex vivo liver tumors at 790 nm using a Sn2P2S6 wavefront adaptive holographic setup. Journal of Biophotonics, 2015, 8(5): 429-436

[75] Xu X, Liu H, Wang L V. Time-reversed ultrasonically encoded optical focusing into scattering media. Nature Photonics, 2011, 5 (3): 154-157

[76] Liu H, Xu X, Lai P, Wang L V. Time-reversed ultrasonically encoded optical focusing into tissue-mimicking media with thickness up to 70 mean free paths. Journal of Biomedical Optics, 2011, 16(8): 086009

[77] Lai P, Xu X, Liu H, Suzuki Y, Wang L V. Reflection-mode timereversed ultrasonically encoded optical focusing into turbid media. Journal of Biomedical Optics, 2011, 16(8): 080505

[78] Suzuki Y, Xu X, Lai P, Wang L V. Energy enhancement in time- reversed ultrasonically encoded optical focusing using a photorefractive polymer. Journal of Biomedical Optics, 2012, 17(8): 080507

[79] Liu Y, Lai P, Ma C, Xu X, Grabar A A, Wang L V. Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light. Nature Communications, 2015, 6: 5904

[80] Liu Y, Ma C, Shen Y, Wang L V. Bit-efficient, sub-millisecond wavefront measurement using a lock-in camera for time-reversal based optical focusing inside scattering media. Optics Letters, 2016, 41(7): 1321-1324

[81] Si K, Fiolka R, Cui M. Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation. Nature Photonics, 2012, 6(10): 657-661

[82] Wang YM, Judkewitz B, Dimarzio C A, Yang C. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasoundencoded light. Nature Communications, 2012, 3: 928

[83] Lai P, Suzuki Y, Xu X,Wang L V. Focused fluorescence excitation with time-reversed ultrasonically encoded light and imaging in thick scattering media. Laser Physics Letters, 2013, 10(7): 075604

[84] Tay J W, Lai P, Suzuki Y, Wang L V. Ultrasonically encoded wavefront shaping for focusing into random media. Scientific Reports, 2014, 4(1): 3918

[85] Suzuki Y, Tay J W, Yang Q, Wang L V. Continuous scanning of a time-reversed ultrasonically encoded optical focus by reflectionmode digital phase conjugation. Optics Letters, 2014, 39(12): 3441-3444

[86] Si K, Fiolka R, Cui M. Breaking the spatial resolution barrier via iterative sound-light interaction in deep tissue microscopy. Scientific Reports, 2012, 2: 748

[87] Judkewitz B, Wang Y M, Horstmeyer R, Mathy A, Yang C. Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE). Nature Photonics, 2013, 7(4): 300-305

[88] Ruan H, Jang M, Judkewitz B, Yang C. Iterative time-reversed ultrasonically encoded light focusing in backscattering mode. Scientific Reports, 2014, 4(1): 7156

[89] Xu X, Kothapalli S-R, Liu H, Wang L V. Spectral hole burning for ultrasound-modulated optical tomography of thick tissue. Journal of Biomedical Optics, 2010, 15(6): 066018

[90] McAuslan D, Taylor L, Longdell J. Using quantum memory techniques for optical detection of ultrasound. Applied Physics Letters, 2012, 101(19): 191112

[91] Taylor L R, McAuslan D L, Longdell J J. Optical detection of ultrasound using AFC-based quantum memory technique in cryogenic rare earth ion doped crystals. In: Proceedings of SPIE 8581, Photons Plus Ultrasound: Imaging and Sensing. 2013, 858117

[92] Taylor L R, Doronin A, Meglinski I, Longdell J J. Acousto-optic imaging using quantum memories in cryogenic rare earth ion doped crystals. In: Proceedings of SPIE 8943, Photons Plus Ultrasound: Imaging and Sensing. 2014, 89431D

[93] Lesaffre M, Farahi S, Gross M, Delaye P, Boccara C, Ramaz F. Acousto-optical coherence tomography using random phase jumps on ultrasound and light. Optics Express, 2009, 17(20): 18211- 18218

[94] Lesaffre M, Farahi S, Boccara A C, Ramaz F, Gross M. Theoretical study of acousto-optical coherence tomography using random phase jumps on ultrasound and light. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2011, 28(7): 1436-1444

[95] Lesaffre M, Farahi S, Ramaz F, Gross M. Experimental study of z resolution in acousto-optical coherence tomography using random phase jumps on ultrasound and light. Applied Optics, 2013, 52(5): 949-957

[96] A La Guillaume E B, Farahi S, Bossy E, Gross M, Ramaz F. Acousto-optical coherence tomography with a digital holographic detection scheme. Optics Letters, 2012, 37(15): 3216-3218

[97] Staley J, Hondebrink E, Peterson W, Steenbergen W. Photoacoustic guided ultrasound wavefront shaping for targeted acoustooptic imaging. Optics Express, 2013, 21(25): 30553-30562

[98] Daoudi K, Hussain A, Hondebrink E, Steenbergen W. Correcting photoacoustic signals for fluence variations using acousto-optic modulation. Optics Express, 2012, 20(13): 14117-14129

[99] ussain A, Petersen W, Staley J, Hondebrink E, Steenbergen W. Quantitative blood oxygen saturation imaging using combined photoacoustics and acousto-optics. Optics Letters, 2016, 41(8): 1720-1723

[100] Schytz H W, Guo S, Jensen L T, Kamar M, Nini A, Gress D R, Ashina M. A new technology for detecting cerebral blood flow: a comparative study of ultrasound tagged NIRS and 133Xe-SPECT. Neurocritical Care, 2012, 17(1): 139-145

[101] c-FLOWTM - Cerebral Perfusion Monitor- Ornim- Non Invasive Brain Monitoring | Brain Blood Flow | Cerebral Blood Flow, http:// www.ornim.com/c-flow/.

[102] Tsalach A, Ratner E, Lokshin S, Silman Z, Breskin I, Budin N, Kamar M. Cerebral autoregulation real-time monitoring. PLoS One, 2016, 11(8): e0161907

[103] Zhu L, Xie W, Li Z, Li H. Experimental study of ultrasoundmodulated scattering light using different frequencies ultrasound probes. Chinese Optics Letters, 2014, 12(7): 071701-071703

[104] Cui M, Yang C. Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation. Optics Express, 2010, 18(4): 3444-3455

[105] Singh M S, Kanhirodan R, Vasu R M, Roy D. Ultrasound modulation of coherent light in a multiple-scattering medium: experimental verification of nonzero average phase carried by light. Biomedical Optics Express, 2012, 3(9): 2100-2110

[106] Li J, Ku G, Wang L V. Ultrasound-modulated optical tomography of biological tissue by use of contrast of laser speckles. Applied Optics, 2002, 41(28): 6030-6035

[107] Zhu L, Lin J, Lin B, Li H. Noninvasive blood glucose measurement by ultrasound-modulated optical technique. Chinese Optics Letters, 2013, 11(2): 021701-021705

[108] Gross M, Goy P, Al-Koussa M. Shot-noise detection of ultrasoundtagged photons in ultrasound-modulated optical imaging. Optics Letters, 2003, 28(24): 2482-2484

[109] Gross M. Speckle decorrelation in ultrasound-modulated optical tomography made by heterodyne holography. 2016, arXiv preprint arXiv:1606.02902,

[110] Gross M, Ramaz F, Forget B, Atlan M, Boccara A, Delaye P, Roosen G. Theoretical description of the photorefractive detection of the ultrasound modulated photons in scattering media. Optics Express, 2005, 13(18): 7097-7112

[111] Tay S, Blanche P A, Voorakaranam R, Tun A V, Lin W, Rokutanda S, Gu T, Flores D, Wang P, Li G, St Hilaire P, Thomas J, Norwood R A, Yamamoto M, Peyghambarian N. An updatable holographic three-dimensional display. Nature, 2008, 451(7179): 694-698

[112] Lerosey G, Fink M. Acousto-optic imaging: Merging the best of two worlds. Nature Photonics, 2013, 7(4): 265-267

[113] He G S. Optical phase conjugation: principles, techniques, and applications. Progress in Quantum Electronics, 2002, 26(3): 131- 191

[114] Ma C, Xu X, Wang L V. Analog time-reversed ultrasonically encoded light focusing inside scattering media with a 33000 optical power gain. Scientific Reports, 2015, 5(1): 8896

[115] Jayet B, Huignard J P, Ramaz F. Optical phase conjugation in Nd: YVO4 for acousto-optic detection in scattering media. Optics Letters, 2013, 38(8): 1256-1258

[116] Khurgin J B. Slow light in various media: a tutorial. Advances in Optics and Photonics, 2010, 2(3): 287-318

[117] Li Y, Zhang H, Kim C,Wagner K H, Hemmer P,Wang L V. Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter. Applied Physics Letters, 2008, 93(1): 011111

[118] Li Y, Hemmer P, Kim C, Zhang H, Wang L V. Detection of ultrasound-modulated diffuse photons using spectral-hole burning. Optics Express, 2008, 16(19): 14862-14874

[119] Racheli N, Ron A, Metzger Y, Breskin I, Enden G, Balberg M, Shechter R. Non-invasive blood flow measurements using ultrasound modulated diffused light. In: Proceedings of SPIE 8223, Photons Plus Ultrasound: Imaging and Sensing. 2012, 82232A

[120] Ron A, Racheli N, Breskin I, Metzger Y, Silman Z, Kamar M, Nini A, Shechter R, Balberg M. Measuring tissue blood flow using ultrasound modulated diffused light. In: Proceedings of SPIE 8223, Photons Plus Ultrasound: Imaging and Sensing. 2012, 82232J

[121] Rosenthal G, Furmanov A, Itshayek E, Shoshan Y, Singh V. Assessment of a noninvasive cerebral oxygenation monitor in patients with severe traumatic brain injury. Journal of Neurosurgery, 2014, 120(4): 901-907

[122] Schwarz M, Rivera G, Hammond M, Silman Z, Jackson K, Kofke W A. Acousto-optic cerebral blood flow monitoring during induction of anesthesia in humans. Neurocritical Care, 2016, 24 (3): 436-441

[123] Hori D, Hogue C, Adachi H, Max L, Price J, Sciortino C, Zehr K, Conte J, Cameron D, Mandal K. Perioperative optimal blood pressure as determined by ultrasound tagged near infrared spectroscopy and its association with postoperative acute kidney injury in cardiac surgery patients. Interactive Cardiovascular and Thoracic Surgery, 2016, 22(4): 445-451

[124] Hori D, Hogue C W Jr, Shah A, Brown C, Neufeld K J, Conte J V, Price J, Sciortino C, Max L, Laflam A, Adachi H, Cameron D E, Mandal K. Cerebral autoregulation monitoring with ultrasoundtagged near-infrared spectroscopy in cardiac surgery patients. Anesthesia and Analgesia, 2015, 121(5): 1187-1193

[125] Powell S, Leung T S. Linear reconstruction of absorption perturbations in coherent ultrasound-modulated optical tomography. Journal of Biomedical Optics, 2013, 18(12): 126020

[126] Powell S, Leung T S. Quantitative reconstruction of absorption and scattering coefficients in ultrasound-modulated optical tomography. In: Proceedings of SPIE 8943, Photons Plus Ultrasound: Imaging and Sensing. 2014, 89434X-89434X-89411

[127] Powell S, Arridge S R, Leung T S. Gradient-based quantitative image reconstruction in ultrasound-modulated optical tomography: first harmonic measurement type in a linearised diffusion formulation. IEEE Transactions on Medical Imaging, 2016, 35 (2): 456-467

[128] Bal G, Schotland J C. Inverse scattering and acousto-optic imaging. Physical Review Letters, 2010, 104(4): 043902

[129] Bal G, Moskow S. Local inversions in ultrasound-modulated optical tomography. Inverse Problems, 2014, 30(2): 025005

[130] Bal G, Schotland J C. Ultrasound-modulated bioluminescence tomography. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2014, 89(3): 031201

[131] Bal G, Chung F J, Schotland J C. Ultrasound modulated bioluminescence tomography and controllability of the radiative transport equation. SIAM Journal on Mathematical Analysis, 2016, 48(2): 1332-1347

[132] Ammari H, Bossy E, Garnier J, Nguyen L, Seppecher L. A reconstruction algorithm for ultrasound-modulated diffuse optical tomography. Proceedings of the American Mathematical Society, 2014, 142(9): 3221-3236

[133] Ammari H, Garnier J, Nguyen L H, Seppecher L. Reconstruction of a piecewise smooth absorption coefficient by an acousto-optic process. Communications in Partial Differential Equations, 2013, 38(10): 1737-1762

[134] Ammari H, Nguyen L H, Seppecher L. Reconstruction and stability in acousto-optic imaging for absorption maps with bounded variation. Journal of Functional Analysis, 2014, 267 (11): 4361-4398

[135] Huynh N T, He D, Hayes-Gill B R, Crowe J A,Walker J G, Mather M L, Rose F R, Parker N G, Povey M J, Morgan S P. Application of a maximum likelihood algorithm to ultrasound modulated optical tomography. Journal of Biomedical Optics, 2012, 17(2): 026014

[136] Allmaras M, Bangerth W. Reconstructions in ultrasound modulated optical tomography. Journal of Inverse and Ill-Posed Problems, 2011, 19(6): 801-823

[137] Bratchenia A, Molenaar R, van Leeuwen T G, Kooyman R P H. Acousto-optic-assisted diffuse optical tomography. Optics Letters, 2011, 36(9): 1539-1541

[138] Varma HM, Mohanan K P, Hyv nen N, Nandakumaran A K, Vasu R M. Ultrasound-modulated optical tomography: recovery of amplitude of vibration in the insonified region from boundary measurement of light correlation. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2011, 28(11): 2322-2331

[139] Mohanan K P, Nandakumaran A K, Roy D, Vasu RM. Ultrasoundmodulated optical tomography: direct recovery of elasticity distribution from experimentally measured intensity autocorrelation. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2015, 32(5): 955-963

[140] Li J, Wang L V. Ultrasound-modulated optical computed tomography of biological tissues. Applied Physics Letters, 2004, 84(9): 1597-1599

Jacqueline GUNTHER, Stefan ANDERSSON-ENGELS. Review of current methods of acousto-optical tomography for biomedical applications[J]. Frontiers of Optoelectronics, 2017, 10(3): 211. Jacqueline GUNTHER, Stefan ANDERSSON-ENGELS. Review of current methods of acousto-optical tomography for biomedical applications[J]. Frontiers of Optoelectronics, 2017, 10(3): 211.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!