激光与光电子学进展, 2016, 53 (2): 020402, 网络出版: 2016-01-25  

共振隧穿二极管近红外探测器的电流抑制方法研究 下载: 557次

Current Suppression of Resonant Tunneling Diode Photodetector Working at Near-Infrared Wavelengths
作者单位
1 广西大学有色金属及材料加工新技术教育部重点实验室, 广西 南宁 530004
2 中国科学院半导体研究所半导体超晶格国家重点实验室, 北京 100084
摘要
针对共振隧穿二极管近红外探测器焦平面阵列本征电流较大的问题,提出了一种通过对共振隧穿二极管近红外探测器双势垒结构(DBS)进行p 型掺杂来抑制电流的方法,并用有限元软件对探测器进行了模拟。研究了单势垒p 型掺杂、双势垒p 型掺杂、双势垒结构p 型掺杂及p 型掺杂浓度对探测器本征电流抑制效果的影响。模拟结果显示,对双势垒结构进行p 型掺杂后,探测器的隧穿峰值电流比非掺杂的双势垒结构的探测器的隧穿峰值电流小将近3个数量级。随着双势垒结构p 型掺杂浓度的增加,器件本征电流会相应地减小。对器件进行了制备以及测试,结果表明,将双势垒结构进行p 型掺杂,对探测器的本征电流有明显的抑制作用。
Abstract
Aiming at the problem of oversize eigen current of resonant tunneling diode photodetector focal plane array working at near-infrared wavelengths, a method that using p-doped type in double barriers structure (DBS) of resonant tunneling diode photodetector working at near- infrared wavelengths to suppress eigen current is presented. The current-voltage characteristics are simulated by finite element software. Effects of single barrier pdoped, double barriers p-doped,DBS p-doped and concentrations of p-doping on the eigen current suppression are researched. Simulation results show that the peak tunneling current of the detector with p-doped in DBS reduces about 3 orders of magnitude compared with that of the detector with undoped DBS. It is also found that the eigen current reduces with the increasing of the doping concentration of the DBS. The proposed device has been fabricated and tested. The results demonstrate that the eigen current is effectively suppressed when the DBS is doped in p-type.
参考文献

[1] S Suzuki, A Teranishi, K Hinata, et al.. Fundamental oscillation of up to 831 GHz in GaInAs/AlAs resonant tunneling diode [J]. Appl Phys Express, 2009, 2(5): 054501.

[2] H Kanaya, R Sogabe, T Maekawa, et al.. Fundamental oscillation up to 1.42 THZ in resonant tunneling diodes by optimized collector spacer thickness[J]. Journal of Infrared Millimeter and Terahertz Waves, 2014, 35(5): 425-431.

[3] P Mazumder, S Kulkarni, M Bhattacharya, et al.. Digital circuit applications of resonant tunneling devices[J]. IEEE, 1998, 86(4): 664-686.

[4] H I Cantú, B Romeira, A E Kelly, et al.. Resonant tunneling diode optoelectronic circuits applications in radio-over-fiber networks[J]. IEEE Trans Microware Theory and Techniques, 2012, 60(9): 2903-2912.

[5] I Coelho, J Martins, J Figueiredo, et al.. Modeling of light-sensitive resonant-tunneling-diode devices[J]. J Appl Phys, 2004, 95(12): 8258-8263.

[6] J C Blakesley, P See, A J Shields, et al.. Efficient single photon detection by quantum dot resonant tunneling diodes[J]. Phys Rev Lett, 2005, 94(6): 067401.

[7] F Hartmann, F Langer, D Bisping, et al.. GaAs/AlGaAs resonant tunneling diodes with a GaInNAs absorption layer for telecommunication light sensing[J]. Appl Phys Lett, 2012, 100(17): 172113.

[8] A Pfenning, F Hartmann, F Langer, et al.. Cavity- enhanced resonant tunneling photodetector at telecommunication wavelengths[J]. Appl Phys Lett, 2014, 104(10): 101109.

[9] M Tsuchiya, H Sakaki, J Yoshino, et al.. Room temperature observation of differential negative resistance in an AlAs/GaAs/ AlAs resonant tunneling diode[J]. Jan J Appl Phys, 1985, 24(6): 466-468.

[10] H W Li, B E Kardynal, P See, et al.. Quantum dot resonant tunneling diode for telecommunication wavelength single photon detection[J]. Appl Phys Lett, 2007, 91(7): 073516.

[11] B Romeira, L M Pessoa, H M Salgado, et al.. Photo-detectors integrated with resonant tunneling diodes[J]. Sensors, 2013, 13(7): 9464-9482.

[12] 董宇, 王广龙, 倪海桥, 等. 共振隧穿弱光探测器的分子束外延生长条件优化[J]. 中国激光, 2015, 42(8): 0817001.

    Dong Yu, Wang Guanglong, Ni Haiqiao, et al.. Optimization of molecular beam epitaxy conditions of resonant tunneling diode photodetector[J]. Chinese J Lasers, 2015, 42(8): 0817001.

裴康明, 詹锋, 倪海桥, 董宇, 牛智川. 共振隧穿二极管近红外探测器的电流抑制方法研究[J]. 激光与光电子学进展, 2016, 53(2): 020402. Pei Kangming, Zhan Feng, Ni Haiqiao, Dong Yu, Niu Zhichuan. Current Suppression of Resonant Tunneling Diode Photodetector Working at Near-Infrared Wavelengths[J]. Laser & Optoelectronics Progress, 2016, 53(2): 020402.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!