红外与激光工程, 2018, 47 (9): 0904003, 网络出版: 2018-10-06   

固体火箭发动机喷焰复燃及其对红外辐射的影响

Afterburning and infrared radiation effects of exhaust plumes for solid rocket motors
李霞 1,2,3刘建国 1王俊 2,3刘兴润 2,3
作者单位
1 中国科学院安徽光学精密机械研究所 中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
3 光学辐射重点实验室, 北京 100854
摘要
火箭发动机喷焰涉及复杂的流动、复燃和辐射效应, 并对喷焰辐射的光学探测跟踪有着重要的影响。以固体火箭发动机为研究对象, 建立喷焰化学反应复燃数值模拟方法和视线光辐射传输数值计算方法, 对不同飞行条件下的喷焰流动、辐射特性进行计算分析, 重点考察复燃效应对不同高度喷焰辐射特性的影响。研究结果表明: 复燃效应引起喷焰温升可达到1 000 K, 并使得喷焰谱带辐射强度有10倍以上的增强; 对于不同谱带辐射强度会随高度先升后降, 最大的高度在20~30 km, 短波2.7 μm波段有约17倍的辐射增强, 中波4.3 μm波段约有16倍增强, 可见复燃引起辐射增强作用H2O分子的贡献大于CO2分子的贡献。研究结果可为进一步的理论研究和工程应用提供参考。
Abstract
Exhaust plumes of solid rocket motors involve complex flow state, afterburning and radiation effects, which have an important role in the operations of detecting, indentifying, and tracking. To investigate the characteristics of afterburning and radiation effects under different flight conditions, the computational fluid dynamics method and the finite-rate ratio model were used to simulate the flow properties with chemical reactions, and line of sight method was utilized to solve the radiation transmission equations. The influence of afterburning effect on the radiation characteristics of different heights was analyzed. The results show that the afterburning effect can cause the flame temperature rise to 1 000 K, and increase the radiation brightness of the flame band more than 10 times. For different bands, the radiation brightness rises and then decreases along with the height. The maximal position is 20-30 km, with about 17 times radiation enhancement in the short wave 2.7 μm waveband and about 16 times in the 4.3 μm mid wave waveband. It can be seen that the contribution of the H2O molecule caused by the afterburning is greater than that of the CO2 molecule. Theses can provide reference for further theoretical research and engineering application.
参考文献

[1] 王中, 王宏, 孙美. 固体火箭发动机红外辐射及抑制技术[J]. 激光与红外, 2003, 33(5): 323-324.

    Wang Zhong, Wang Hong, Sun Mei. Infrared radiation and anti-infrared technology of the solid propellants rocket[J]. Laser & Infrared, 2003, 33(5): 323-324. (in Chinese)

[2] Hong J S, Levin D A, Collins R J, et al. Comparison of Atlas ground based plume imagery with chemically reacting flow solutions[R]. AIAA-1997-2537, 1997.

[3] Rao R M, Sinha K, Candler G V, et al. Numerical simulations of Atlas II rocket motor plumes[R]. AIAA-99-31103, 1999.

[4] Candler G V, Rao R M, Sinha K, et al. Numerical simulations of Atlas-II rocket motor plumes[R]. AIAA-01-16256, 2001.

[5] Fu D, Yu Y, Niu Q. Simulation of under expanded supersonic jet flows with chemical reactions[J]. Chinese Journal of Aeronautics, 2014, 27(3): 505-513.

[6] 杨育文, 邓康清, 余小波, 等. 高含铝推进剂低压固体火箭发动机尾流场复燃数值模拟与实验研究[J]. 推进技术,2017, 38(3): 680-685.

    Yang Yuwen, Deng Kangqing, Yu Xiaobo, et al. Numerical simulation and experimental investigation on plume afterburning of low-pressure solid rocket motor with highly aluminized propellant[J]. Journal of Propulsion Technology,2017, 38(3): 680-685. (in Chinese)

[7] 李军, 李志刚, 曹从咏, 等. 多组份含化学反应火箭燃气射流流场的数值模拟[J]. 宇航学报, 1998, 19(2): 48-54.

    Li Jun, Li Zhigang, Cao Congyong, et al. The numerical simulation of rocket gas efflux field with multispecies and chemical reaction[J]. Journal of Astronautics, 1998, 19(2): 48-54. (in Chinese)

[8] 詹光, 李椿萱. 发动机燃气喷流红外辐射场的数值模拟[J]. 北京航空航天大学学报, 2005, 31(8): 829-833.

    Zhan Guang, Li Chunxuan. Numerical computations of infrared signatures in exhaust flow fields of jet engines[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(8): 829-833. (in Chinese)

[9] 李建勋, 童中翔, 刘万俊, 等. 航空发动机红外辐射实验与仿真[J].红外与激光工程, 2013, 42(3): 550-553.

    Li Jianxun, Tong Zhongxiang, Liu Wanjun, et al. Infrared radiation characteristic experiment and simulation of aero engine[J]. Infrared and Laser Engineering, 2013, 42(3): 550-553. (in Chinese)

[10] Leone D M, Turns S R. Active Chlorine and nitric oxide formation from chemical rocket plume afterburning[R]. AIAA 94-0788,1994.

[11] 刘尊洋, 邵立, 汪亚夫, 等. 复燃对固体火箭尾焰红外辐射特性的影响[J]. 光学学报, 2013, 33(6): 0604001.

    Liu Zunyang, Shao Li, Wang Yafu, et al. Influence on afterburning on infrared radiation of solid rocket exhaust Plume[J]. Acta Optica Sinaca, 2013, 33(6): 0604001. (in Chinese)

[12] 阮立明, 齐宏, 王圣刚, 等. 导弹尾喷焰目标红外特性的数值仿真[J]. 红外与激光工程, 2008, 37(6): 959-962.

    Ruan Liming, Qi Hong, Wang Shenggang, et al. Numerical simulation of the infrared characteristic of missile exhaust plume[J]. Infrared and Laser Engineering, 2008, 37(6): 959-962. (in Chinese)

[13] 董士奎, 帅永, 谈和平, 等. 反向蒙特卡罗法模拟参与性介质中热辐射传递[J]. 哈尔滨工业大学学报, 2004, 36(12): 1602-1604.

    Dong Shikui, Shuai Yong, Tan Heping, et al. Computation of radiative heat transfer in participating media using Backward Monte Carlo method[J]. Journal of Harbin Institute of Technolog, 2004, 36(12): 1602-1604. (in Chinese)

[14] 帅永, 董士奎, 刘林华. 高温含粒子自由流红外辐射特性的反向蒙特卡洛方法模拟[J]. 红外与毫米波学报, 2005, 24(2): 100-104.

    Shuai Yong, Dong Shikui, Liu Linhua. Simulation of infrared radiation characteristics of high temperature free stream flow including particles by using backward Monte-Carlo method[J]. Journal of Infrared and Millimeter Waves, 2005, 24(2): 100-104. (in Chinese)

[15] 谈和平, 夏新林, 刘林华, 等. 红外辐射特性与传输的数值计算: 计算辐射学[M]. 哈尔滨: 哈尔滨工业大学出版社, 2006: 147.

    Tan Heping, Xia Xinlin, Liu Linhua, et al. Numerical Computation of Infrared Radiation Characteristics and Transmission: Computational Radiation[M]. Harbin: Harbin Institute of Technology Press, 2006: 147. (in Chinese)

李霞, 刘建国, 王俊, 刘兴润. 固体火箭发动机喷焰复燃及其对红外辐射的影响[J]. 红外与激光工程, 2018, 47(9): 0904003. Li Xia, Liu Jianguo, Wang Jun, Liu Xingrun. Afterburning and infrared radiation effects of exhaust plumes for solid rocket motors[J]. Infrared and Laser Engineering, 2018, 47(9): 0904003.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!