红外与激光工程, 2015, 44 (12): 3541, 网络出版: 2016-01-26   

剩余吸收层对激光冲击效果影响的实验研究

Experimental study on the effect of the remaining absorbing layer on laser shock processing
作者单位
江苏大学机械工程学院,江苏 镇江 212013
摘要
激光冲击过程中,剩余吸收层对冲击效果影响显著,但其影响规律少有人关注。文中选择厚度、材质不同的材料作吸收层,实施激光冲击,控制激光参数,使得靶材表面留有剩余吸收层。通过表征靶材表面冲击区域凹坑尺寸、力学性能,以及直接检测冲击时靶材背面的冲击波信号,研究剩余吸收层对冲击效果的影响规律。结果表明:剩余吸收层会显著衰减冲击波,进而削弱靶材的冲击效果;对确定的约束层和靶材,存在具有“最佳声阻抗值”的理想吸收层,使得作用于靶材的冲击波强度最大;激光冲击时,为获得好的冲击效果,必须根据约束层、靶材等,选择合适吸收层,优化吸收层涂覆厚度。文中结果为激光冲击时吸收层材质和厚度的选择提供了依据。
Abstract
Remaining absorbing layers have a significant influence on the shock effects of metal samples in laser shock processing(LSP). However, the influence laws are still pending. In this paper, the experiments of LSP were conducted with different materials as the absorbing layers. The influence of the thicknesses of the absorbing layer was also studied. To guarantee that there were remaining absorbing layers on the target surface after shock, the laser parameters were carefully chosen. The influence laws of the remaining absorbing layers on the laser shock effect were researched by measuring the laser shock induced-pit sizes and the mechanical properties of the shocked zones. Furthermore, the shock wave signals on the back of the metal samples were tested by PVDF detector. Experimental results show that, the remaining absorbing layers can attenuate shock wave seriously. Therefore, the shock effects are weakened accordingly. Through the experimental and theoretical research, it can be found that there exist an ideal absorbing layer with "the optimal acoustic impedance", when the confinement layer and metal sample are determined. With the ideal absorbing layer, we can get the strongest shock effect. For achieving good results in LSP, the absorbing layer material should be carefully chosen according to theconfinement layer and metal sample. In the same time, the thickness of an absorbing layer should be controlled reasonably. The results of this paper can provide guidance for choosing the most appropriate absorbing layer for different metal samples in LSP.
参考文献

[1] 葛茂忠, 张永康, 项建云. AZ31B 镁合金激光冲击强化及抗应力腐蚀研究[J]. 中国激光, 2010, 37(11): 2925-2930.

    Ge Maozhong, Zhang Yongkang, Xiang Jianyun. Research on laser shock strengthening and stress corrosion cracking resistance of AZ31B magnesium alloy[J]. Chinese J Lasers, 2010, 37(11): 2925-2930. (in Chinese)

[2] 孔德军, 周朝政, 吴永忠. 304不锈钢激光冲击处理后的残余应力产生机理[J]. 红外与激光工程, 2010, 39(4): 736-740.

    Kong Dejun, Zhou Chaozheng, Wu Yongzhong. Mechanism on residual stress of 304 stainless steel by laser shock processing[J]. Infrared and Laser Engineering, 2010, 39(4):736-740. (in Chinese)

[3] 周建忠, 张永康, 周明, 等. 单次激光冲击下板料变形的理论分析[J]. 中国激光, 2005, 32(1): 135-138.

    Zhou Jianzhong, Zhang Yongkang, Zhou Ming, et al. Theoretical analysis on deformation of sheet metal under one laser shot loading[J]. Chinese J Lasers, 2005, 32(1): 135-138. (in Chinese)

[4] 张凌峰, 张永康, 任旭东, 等. 激光冲击约束层和吸收层的研究[J]. 农业机械学报, 2007(1): 127-131.

    Zhang Lingfeng, Zhang Yongkang, Ren Xudong, et al. Study of confinement layer and absorbing layer in laser shock processing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007(1): 127-131. (in Chinese)

[5] Devaux D, Fabbro R, Tollier R, et al. Generation of shock waves by laser-induced plasma in confined geometry[J]. J Appl Phys, 1993, 74(4): 2268-2273.

[6] Fabbro R, Fournier J, Ballard P, et al. Physical study of laser-produced plasma in confined geometry[J]. J Appl Phys, 1990, 68(2): 775-784.

[7] 胡永祥. 激光冲击处理工艺过程数值建模与冲击效应研究[D]. 上海: 上海交通大学, 2008: 33-35.

    Hu Yongxiang. Research on the numerical simulation and impact effects of laser shock processing[D]. Shanghai:Shanghai Jiaotong University, 2008: 33-35. (in Chinese)

[8] 张凌峰, 张永康, 冯爱新, 等. 激光冲击用柔性贴膜的研究[J]. 激光技术, 2007(1): 65-67.

    Zhang Lingfeng, Zhang Yongkang, Feng Aixin, et al. Analysis of flexible coating for laser shock processing[J]. Laser Technology, 2007(1): 65-67. (in Chinese)

[9] 任旭东, 张永康, 周建忠, 等. 激光冲击加工表面涂层厚度的优选[J]. 金属热处理, 2006(7): 61-64.

    Ren Xudong, Zhang Yongkang, Zhou Jianzhong, et al. Thickness optimizing of surface coating for laser shock processing[J]. Heat Treatment of Metals, 2006(7): 61-64. (in Chinese)

[10] Peyre P, Fabbro R, Merrien P, et al. Laser shock processing of aluminum alloys application to high cycle fatigue behavior[J]. Materials Science & Engineering, 1996, A210(1-2): 102-113.

[11] 洪昕, 王声波, 郭大浩, 等. 激光冲击波在铝靶中衰减特性研究[J]. 量子电子学报, 1998(5): 474-478.

    Hong Xin, Wang Shengbo, Guo Dahao, et al. Research on the attenuation property of the laser-induced shock wave propagation in aluminum[J]. Chinese Journal of Quantum Electronics, 1998(5): 474-478. (in Chinese)

[12] 刘祥. 基于图像处理技术的维氏硬度检测方法的研究[D]. 长春: 长春理工大学, 2009: 6-7.

    Liu Xiang. Dynamic pressure measurement technology using by PVDF piezofilms and its engineering application[D]. Changchun: Changchun University of Science and Technology, 2009: 6-7. (in Chinese)

[13] 盖京波, 王善, 杨世全. 冲击波在多层结构中的传播[J]. 火力与指挥控制, 2007, 32(3): 12-13+18.

    Gai Jingbo, Wang Shan, Yang Shiquan. Promulgation of impact wave in multilayer structure[J]. Fire Control and Command Control, 2007, 32(3): 12-13+18. (in Chinese)

[14] 任连保, 丁力, 刘润生. 声阻抗在钛-钢复合板爆炸焊接过程中的意义和作用[J]. 钛工业进展, 2010(4): 5-8.

    Ren Lianbao, Ding Li, Liu Runsheng. The meaning and role of acoustic impedance in the process of explosion welding for Ti steel composite plate[J]. Titanium Industry Progress, 2010(4): 5-8. (in Chinese)

[15] 朱文辉, 李志勇, 周光泉, 等. 用PVDF实时测量激光诱导的冲击波压力[J]. 实验力学, 1997(2): 52-56.

    Zhu Wenhui, Li Zhiyong, Zhou Quangquang, et al. Measurement of laser-induced shock waves by PVDF[J]. Journal of Experimental Mechanics, 1997(2): 52-56. (in Chinese)

[16] Zhu W H, Yu T X, Li Z Y. Laser-induced shock waves in PMMA confined foils[J]. International Journal of Impact Engineering, 2000, 24: 641-675.

[17] 李思忠. 高速冲击条件下PVDF传感元件测压技术及其工程应用[D]. 成都: 四川大学, 2001: 9-11.

    Li Sizhong. Dynamic pressure measurement technology using by PVDF piezofilms and its engineering applications[D].Chengdu: Sichuan University, 2001: 9-11. (in Chinese)

叶云霞, 赵抒怡, 熊松, 高昌达. 剩余吸收层对激光冲击效果影响的实验研究[J]. 红外与激光工程, 2015, 44(12): 3541. Ye Yunxia, Zhao Shuyi, Xiong Song, Gao Changda. Experimental study on the effect of the remaining absorbing layer on laser shock processing[J]. Infrared and Laser Engineering, 2015, 44(12): 3541.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!