光学与光电技术, 2019, 17 (3): 83, 网络出版: 2019-07-20  

一种利用分布式光传感技术的变电站地基沉降监测方案

Substation Foundation Settlement Monitoring Scheme Using Distributed Optical Sensing Technology
作者单位
1 广东电网有限责任公司清远供电局, 广东 清远 511500
2 武汉康普常青软件技术股份有限公司, 湖北 武汉 430073
摘要
为了解决某些建设在地势低洼地区变电站的地基沉降问题, 利用分布式光纤传感技术, 提出了一种变电站地基沉降监测方案。在介绍分布式光纤传感技术的基础上, 研究了抗干扰能力强的应力光缆作为感应元件。分别介绍了地表变形监测光缆、深部变形监测光缆、基桩沉降监测光缆和连接光缆的布设方式。最后以两种类型的变电站作为试点应用对象, 对监测结果分析表明, 由监测定位图中的波峰和波谷位置可以判断光缆松弛程度, 进而确定应变方向和幅值, 提出的监测方案可以很好地满足变电站地基沉降监测的需要。可以为变电站地基沉降防治技术的进步提供参考和辅助。
Abstract
In order to solve the problem of foundation settlement of some substations built in low-lying areas, in this paper, a distributed fiber optic sensing technology is used to propose a substation foundation settlement monitoring scheme. Based on the introduction of distributed optical fiber sensing technology, the stress cable with strong anti-interference ability is studied as the sensing element. The layout methods of surface deformation monitoring optical cable, deep deformation monitoring optical cable, pile settlement monitoring optical cable and connecting optical cable are introduced respectively. Finally, two types of substations are used as pilot applications. The analysis of monitoring results show that from the position of the peaks and troughs in the monitoring map, the degree of slack in the cable could be judged, and the strain direction and amplitude could be determined, therefore the monitoring scheme of this paper could well meet the needs of substation foundation settlement monitoring. The research in this paper could provide reference and assistance for the improvement of substation foundation settlement prevention technology.
参考文献

[1] 罗业雄. 珠三角地区变电站工程软土地基处理方法分析[J]. 工程建设与设计, 2014, 15(9): 68-70.

    LUO Ye-xiong. Analysis about soft soil ground treatment of substation project in the pearl river delta[J]. Construction & Design for Project, 2014, 15 (9): 68-70.

[2] 张欣, 姚森敬, 陈泰, 等. 基于布里渊散射的分布式光纤技术的研究[J]. 光通信技术, 2015, 8(1): 53-55.

    ZHANG Xin, YAO Sen-jing, CHEN Tai, et al. Research of the distributed optical fiber technology based on Brillouin scattering [J]. Optical Communications Technology, 2015, 8(1): 53-55.

[3] 隋海波, 施斌, 张丹, 等. 边坡工程分布式光纤监测技术研究[J]. 岩石力学与工程学报, 2008, 27(增2): 3725-3731.

    SUI Hai-bo, SHI bin, ZHANG Dan, et al. Study on distributed optical fiber sensor-based monitoring for slope engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(S2): 3725-3731.

[4] 朱鸿鹄, 殷建华, 洪成雨, 等. 基于光纤传感的边坡工程监测技术[J]. 工程勘察, 2010, 38(3): 6-10.

    ZHU Hong-hu, YIN Jian-hua, HONG Cheng-yu, et al. Fiber optic based monitoring technologies of slope engineering[J]. Geotechnical Investigation & Surveying, 2010, 38(3): 6-10.

[5] 朱鸿鹄, 施斌, 严珺凡, 等. 基于分布式光纤应变感测的边坡模型试验研究[J]. 岩土力学与工程学报, 2013, 32(4): 821-828.

    ZHU Hong-hu, SHI Bin, YAN Jun-fan, et al. Physical model testing of slope stability based on distributed fiber-optic strain sensing technology [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(4): 821-828.

[6] 卢毅, 施斌, 席均, 等. 基于BOTDR的地裂缝分布式光纤监测技术研究[J]. 工程地质学报, 2014, 22(1): 8-13.

    LU Yi, SHI Bin, XI Jun, et al. Field study of BOTDR-based distributed monitoring technology for ground fissures [J]. Journal of Engineering Geology, 2014, 22(1): 8-13.

[7] 叶宇霄, 赵新铭, 吴刚, 等. 分布式光纤在混凝土结构裂缝监测中的应用[J]. 土木建筑与环境工程, 2018, 40(1): 24-28.

    YE Yu-xiao, ZHAO Xin-ming, WU Gang, et al. Application of distributed optical fiber in the monitoring of cracks in concrete structures [J]. Journal of Civil Architectural & Environmental Engineering, 2018, 40(1): 24-28.

[8] 叶宇霄, 叶方洁, 赵新铭, 等. 分布式光纤混凝土梁应变测试研究[J]. 低温建筑技术, 2017, 39(3): 40-44.

    YE Yu-xiao, YE Fang-jie, ZHAO Xin-ming, et al. Research on strain measure in reinforced concrete beams with distributed optical fiber[J]. Low Temperture Architecture Technology, 2017, 39(3): 40-44.

[9] 邬蓉蓉, 朱时阳, 张文举, 等. 基于布里渊散射与相关因数法的光纤复合架空地线应力分析[J]. 广东电力, 2015, 28(8): 89-92, 109.

    WU Rong-rong, ZHU Shi-yang, ZHANG Wen-ju, et al. Analysis on stress of optical fiber compositie overhead ground wire based on brillouin scattering and correlation coefficient method[J]. Guangdong Electric Power, 2015, 28(8): 89-92, 109.

[10] 张锐, 吴光亚, 刘亚新, 等. 光技术在线监测绝缘子盐密和灰密的实现及应用 [J]. 高压电技术, 2010, 36(6): 1513-1519.

    ZHANG Rui, WU Guang-ya, LIU Ya-xin, et al. Realization and application on monitoring insulator ESDD and NSDD by optical technology [J]. High Voltage Engineering, 2010, 36(6): 1513-1519.

[11] Nikles M, Thevenaz L, Robert P A. Brillouin gain spectrum characterization in single-mode optical fibers[J]. Journal of Lightwave Technology, 1997, 15(10): 1842-1851.

[12] Parker T R, Farhadiroushan M, Handerek V A, et al. A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter[J]. IEEE Photon Technology Letters, 9(7): 979-981.

[13] Bernini R, Minardo A, Zeni L. Reconstruction technique for stimulated Brillouin scattering distributed fiber-optic sensors [J]. Optical Engineering, 2002, 41(9): 2186-2194.

[14] 葛捷. 分布式布里渊光纤传感技术在海堤沉降监测中的应用[J]. 岩土力学, 2009, 30(6): 1856-1860.

    GE Jie. Application of BOTDR to monitoring sea dyke subsidence[J]. Rock and Soil Mechanics, 2009, 30(6): 1856-1860.

[15] 周会娟, 廖毅, 孟洲. 基于布里渊散射的分布式光纤传感技术[J]. 光学技术, 2008, 34(S1): 251-253.

    ZHOU Hui-juan, LIAO Yi, MENG Zhou. Distributed optical fiber sensing based on brillouin scattering[J]. Optical Technology, 2008, 34(S1): 251-253.

[16] 何建平. 全尺度光纤布里渊分布式监测技术及其在土木工程的应用[D]. 哈尔滨: 哈尔滨工业大学, 2010.

    HE Jian-ping. Full-scale distributed monitoring technology of optical fiber brillouin and its applications in civil engineering[D]. Harbin: Harbin Institute of Technology, 2010.

[17] 王飞, 黄宏伟, 张冬梅, 等. 基于BOTDA光纤传感技术的盾构隧道变形感知方法[J]. 岩石力学与工程学报, 2013, 32(9): 1901-1908.

    WANG Fei, HUANG Hong-wei, ZHANG Dong-mei, et al. Deformation sensing method of shield tunnel based on optical fiber sensing technology of BOTDA[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(9): 1901-1908.

[18] 席均. 地面沉降变形分布式光纤传感监测技术研究[D]. 南京: 南京大学, 2012.

    XI Jun. Distributed optical fiber monitoring technology on deformation of land subsidence[D]. Nanjing: Nanjing University, 2012.

[19] 赵宏波, 丁健, 赵子岩. 基于BOTDR的OPGW光缆应力应变测量[J]. 电力系统通信, 2010, 31(1): 20-23.

    ZHAO Hong-bi, DING Jian, ZHAO Zi-yan. Test of OPGW Stress-strain based on BOTDR[J]. Telecommunications for Electric Power System, 2010, 31(1): 20-23.

[20] 单华峰. 地下增层条件下既有受荷基桩承载特性研究[D]. 杭州: 浙江大学, 2017.

    SHAN Hua-feng. Some issues on the bearing behavior of existing loaded foundation piles subjected to creating underground storey[D]. Hangzhou: Zhejiang University, 2017.

王伟, 胡金磊, 王文博, 张哲民, 张坤, 华奎. 一种利用分布式光传感技术的变电站地基沉降监测方案[J]. 光学与光电技术, 2019, 17(3): 83. WANG Wei, HU Jin-lei, WANG Wen-bo, ZHANG Zhe-min, ZHANG Kun, HUA Kui. Substation Foundation Settlement Monitoring Scheme Using Distributed Optical Sensing Technology[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2019, 17(3): 83.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!