红外与激光工程, 2018, 47 (11): 1105009, 网络出版: 2019-01-10   

定向红外对抗系统中的激光器技术

Laser technology for direct IR countermeasure system
作者单位
1 中国科学院光电研究院,北京 100094
2 中国科学院大学, 北京100049
3 洛阳电光设备研究所, 洛阳 471000
摘要
便携式防空系统 (MANPADs)、各类红外制导导弹等红外热寻的**是民用、军用飞机重要的威胁。随着红外成像探测器被广泛用于热寻的制导**,传统的红外干扰机、曳光弹难以形成有效对抗, 以红外波段激光作为光源的红外定向对抗(DIRCM)系统是目前对抗热寻的**的有效手段。文中回顾了目前有代表性的红外定向对抗系统, 分析阐述用于红外定向对抗系统中的激光器关键技术, 给出红外成像探器致眩区域计算方法, 并讨论展望红外对抗激光器技术的发展趋势。
Abstract
Heat seeking weapons such as man-portable air defense system (MANPADs), various IR guiding missile are the main threaten for civil aircraft and military aircraft. As the appearance of IR imaging seeker, the effect of traditional IR interference equipment and infrared flares are limited. Otherwise, direct IR countermeasure (DIRCM) system has been effective means. In this paper, the international research on DIRCM and key techniques for laser of DIRCM was reviewed. Furthermore, calculating method for dazzling area of imaging detector was given. At the same time, the research trends of DIRCM and laser of DIRCM were forecasted in the future.
参考文献

[1] Abramov P I, Kuznetsovand E V, Kvortsov L A. Prospects of using quantum-cascade lasers in optoelectronic countermeasure systems: review[J]. Journal of Optical Technology, 2017, 84: 331.

[2] 范晋祥, 李亮, 李文军. 定向红外对抗系统与技术的发展[J]. 红外与激光工程, 2015, 44(S3): 789-794.

    Fan Jinxiang, Li Liang, Li Wenjun. Development of direct infrared countermeasure system and technology[J]. Infrared and Laser Engineering, 2015, 44(S3): 789-794. (in Chinese)

[3] Northrop Grumman, Electronics Systems, Directional Infrared Countermeasures(DIRCM) Gallery.[2018-05-04]. http: //www.es.northropgrumman.com/solutions/nemesis/gallery.html

[4] Northrop Grumman, Electronics Systems, Directional Infrared Countermeasures(DIRCM) Gallery.[2018-03-02]. http: //www.es.northropgrumman.com/solutions/nemesis/gallery.html.

[5] 张元生, 徐亮, 陈方, 等, 机载定向红外对抗系统的中波红外激光器及关键技术[J]. 电光与控制, 2017, 24(5): 56-59.

    Zhang Yuansheng, Xu Liang, Chen Fang, et al. Mid-infrared lasers used in airborne directed infrared countermeasures system and its key technologies[J]. Electronics Optics & Control, 2017, 24(5): 56-59. (in Chinese)

[6] Schleijipen R M A, Heuvel J C, Mieremet AL, et al. Laser dazzling of focal plane array cameras[C]//Proc SPIE, 2007, 6738: 67380O.

[7] Schleijipen R M A, Heuvel J C, Mieremet A L, et al. Laser dazzling of focal-plane-array cameras[C]//Proc SPIE, 2007, 6543: 65431B.

[8] Andrew Sijan, Development of military lasers for optical countermeasures in The mid-IR[C]//Proc SPIE Technologies for Optical Countermeasures VI, 2009, 7483: 748304.

[9] Ian Elder. Performance requirements for countermeasures lasers[C]//Proc SPIE Technologies for Optical Countermeasures VII, 2010, 7836: 783605.

[10] Cornelius J Willers, Maria S Willers. Simulating the DIRCM engagement component and system level performance[C]//Proc SPIE, 2012, 8543: 85430M.

[11] 李丽娟, 白晓东, 刘珂. 空空导弹双色红外成像制导关键技术分析[J]. 激光与红外, 2013, 43(9): 1036-1039.

    Li Lijuan, Bai Xiaodong, Liu Ke. Analysis of the key technologies for dual color IR imaging guidance of air-to-air missile[J]. Laser & Infrared, 2013, 43(9): 1036-1039. (in Chinese)

[12] Lippert E, Fonnum H, Stenersen K. High power multi-wavelength infrared source; proceedings of the Security+ Defence, F[C]// International Society for Optics and Photonics, 2010.

[13] Martin Schellhorn, Gerhard Spindler, Marc Eichhorn. Improvement of the beam quality of a high-pulse-energy mid-infrared fractionalimage-rotation-enhancement ZnGeP2 optical parametric oscillator[J]. Opt Lett, 2017, 42: 1185.

[14] Wagner J, Hugger S, R 觟sener B, et al. Infrared semiconductor laser modules for DIRCM applications[C]//Proc SPIE Technologies for Optical Countermeasures VI, 2009, 7483: 74830F.

[15] Tauke-Pedretti A. Power sharing in dual-wavelength optically pumped midinfrared laser[J]. IEEE Photonics Technology Letters, 2009, 21(14): 1011-1013.

[16] Hopkins J M. High-power(AlGaIn)(AsSb) semiconductor disk laser at 2.0 μm[J]. Optics Letters, 2008, 33(2): 201-203.

[17] Kazarinov R F, Suris R A. Possibility of the amplification of electromagnetic waves in a semiconductor with a superlattice[J]. Sov Phys Semicond, 1971, 5(4): 707-709.

[18] Jerome Faist, Federico Capasso, Sivco D L, et al. Quantum cascade laser[J]. Science, 1994, 264: 553-556.

[19] Mattias Beck, Daniel Hofstetter, Thierry Aellen, et al.Continuous wave operation of a mid-infrared semiconductor laser at room temperature[J]. Science, 2002, 295: 301-305.

[20] Alexei Tsekoun, Rowel Go, Michael Pushkarsky, et al.Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mounting process[J]. Proc Nat Acad Sciences, 2006, 103: 4831-4835.

[21] Kumar C, Patel N, Arkadiy Lyakh. High power quantum cascade lasers forinfrared countermeasures, targeting and illumination, beacons and standoff detection of explosives and CWAs[C]//Proc SPIE Micro- and Nanotechnology Sensors, Systems, and Applications VII, 2015, 9467: 946702.

[22] Manijeh Razeghi, Zhou Wenjia, Steven Slivken, et al. Recent progress of quantum cascade laser research from 3 to 12 μm at the Center for Quantum Devices[J]. Applied Optics, 2017, 56(31): H30-H44.

[23] Heydari D, Bai Y, Bandyopadhyay N, et al. High brightness angled cavity quantum cascade lasers[J]. Appl Phys Lett, 2015, 106: 091105.

[24] Hopkins J-M. High-power(AlGaIn)(AsSb) semiconductor disk laser at 2.0 μm[J]. Optics Letter, 2008, 33(2): 201-203.

[25] Zhou W J, Bandyopadhyay N, Wu D H, et al. Monolithically, widely tunable quantum cascade lasers based on a heterogeneous active region design[J]. Sci Rep, 2016, 6: 25213.

[26] Bradshaw J L, Tober R L, Bruno J D, et al. Wavelength beam combined quantum cascade lasers for IRCM[C]// Proc SPIE Laser Technology for Defense and Security V, 2009, 7325: 73250K.

[27] 刘峰奇, 王占国, 红外量子级联激光器[J]. 物理, 2001, 30(10): 596-601.

    Liu Fengqi, Wang Zhanguo. Infrared quantum cascade lasers [J]. Physics, 2001, 30(10): 596-601. (in Chinese)

[28] 宋淑芳, 邢伟荣, 刘铭. 量子级联激光器的原理及研究进展[J]. 激光与红外, 2013, 43(9): 972-976.

    Song Shufang, Xing Weirong, Liu Ming. Theory and research advancement of quantum cascade lasers[J]. Laser & Infrared, 2013, 43(9): 972-976. (in Chinese)

孟冬冬, 张鸿博, 李明山, 林蔚然, 沈兆国, 张杰, 樊仲维. 定向红外对抗系统中的激光器技术[J]. 红外与激光工程, 2018, 47(11): 1105009. Meng Dongdong, Zhang Hongbo, Li Mingshan, Lin Weiran, Shen Zhaoguo, Zhang Jie, Fan Zhongwei. Laser technology for direct IR countermeasure system[J]. Infrared and Laser Engineering, 2018, 47(11): 1105009.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!