Journal of Innovative Optical Health Sciences, 2012, 5 (4): 1250022, Published Online: Jan. 10, 2019  

AXIAL SUPERRESOLUTION BY PHASE FILTER IN OPTICAL COHERENCE TOMOGRAPHY

Author Affiliations
State Key Laboratory of Modern Optical Instrumentation Zhejiang University, Hangzhou 310027, P. R. China
Abstract
Axial superresolution in optical coherence tomography (OCT) by a three-zone annular phase filter is demonstrated. In the proposed probe of a spectral domain OCT system, the width of the central lobe of the axial intensity point spread function is apodized by the filter to be within the coherence gate determined by the light source, while its sidelobes are lying outside the coherence gate without contributing to the coherence imaging. By measurement of the depth response of the OCT system before and after inserting the filter, an improvement of about 20% in axial resolution is confirmed. OCT imaging on biological sample of orange fresh is also conducted, demonstrating increased depth discrimination without the negative contribution from sidelobes realized by the phase filter in combination with the coherence gate intrinsic to OCT. It comes to a conclusion that we can obtain axial superresolution by filter in OCT system without the degrading influence of large sidelobes.
References

[1] R. Heintzmann, T. M. Jovin, C. Cremer, "Saturated patterned excitation microscopy — a concept for optical resolution improvement," J. Opt. Soc. Am. A 19(8), 1599-1609 (2002).

[2] M. A. Schwentker, H. Bock, M. Hofmann, S. Jakobs, J. Bewersdorf, C. Eggeling, S. W. Hell, "Wide-field subdiffraction RESOLFT microscopy using fluorescent protein photoswitching," Microsc. Res. Tech. 70(3), 269-280 (2007).

[3] E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, "Breaking the diffraction barrier: Optical microscopy on a nanometric scale," Science 251(5000), 1468-1470 (1991).

[4] T. R. M. Sales, G. M. Morris, "Diffractive superresolution elements," J. Opt. Soc. Am. A 14(7), 1637-1646 (1997).

[5] T. R. M. Sales, G. M. Morris, "Fundamental limits of optical superresolution," Opt. Lett. 22(9), 582-584 (1997).

[6] H. Luo, C. Zhou, "Comparison of superresolution effects with annular phase and amplitude filters," Appl. Opt. 43(34), 6242-6247 (2004).

[7] Z. Ding, G. Wang, M. Gu et al., "Superresolution using an apodization film in a confocal setup," Appl. Opt. 36(1), 360-363 (1997).

[8] T. R. M. Sales, G. M. Morris, "Axial superresolution with phase-only pupil filters," Opt. Commun. 156(4-6), 227-230 (1998).

[9] A. F. Fercher, W. Drexler, C. K. Hitzenberger, T. Lasser, "Optical coherence tomography — principles and applications," Rep. Prog. Phys. 66(2), 239-303 (2003).

[10] L. Zhou, Z. Ding, X. Yu, "Depth superresolution in optical coherence tomography through the combination of apodization and coherence gating," Acta Opt. Sin. 25(9), 1181-1185 (2005).

[11] U. Morgner, F. X. K rtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, "Sub-two cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser," Opt. Lett. 24(6), 411-413 (1999).

[12] A. Baumgartner, C. K. Hitzenberger, H. Sattmann, W. Drexler, A. F. Fercher, "Signal and resolution enhancements in dual beam optical coherence tomography of the human eye," J. Biomed. Opt. 3(1), 45-54 (1998).

[13] S. Sun, J. Guo, J. Gao, P. Xue, "Enhancement of optical coherence tomography axial resolution by spectral shaping," Chin. Phys. Lett. 19(10), 1456-1458 (2002).

[14] Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, R. S. Windeler, "Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber," Opt. Lett. 28(3), 182-184 (2003).

[15] T. A. Birks, W. J. Wadsworth, P. S. J. Russell, "Supercontinuum generation in tapered fibers," Opt. Lett. 25(19), 1415-1417 (2000).

[16] M. D. Kulkarni, C. W. Thomas, J. A. Izatt, "Image enhancement in optical coherence tomography," Electron. Lett. 33(16), 1365-1367 (1997).

[17] M. Born, E. Wolf, Principle of Optics, Chap. 8 (Oxford, Pergamon Press, 1975).

[18] D. M. de Juana, J. E. Oti, V. F. Canales, M. P. Cagigal, "Design of superresolving continuous phase filters," Opt. Lett. 28(8), 607-609 (2003).

ZHIHUA DING, YANG NI, JIE MENG. AXIAL SUPERRESOLUTION BY PHASE FILTER IN OPTICAL COHERENCE TOMOGRAPHY[J]. Journal of Innovative Optical Health Sciences, 2012, 5(4): 1250022.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!