激光与光电子学进展, 2018, 55 (5): 050004, 网络出版: 2018-09-11   

高功率掺铥石英光纤激光器研究进展 下载: 2057次

Research Progress in High Power Tm 3+-Doped Silica Fiber Lasers
作者单位
华中科技大学武汉光电国家实验室, 湖北 武汉 430074
引用该论文

刘茵紫, 邢颍滨, 徐中巍, 李进延. 高功率掺铥石英光纤激光器研究进展[J]. 激光与光电子学进展, 2018, 55(5): 050004.

Yinzi Liu, Yingbin Xing, Zhongwei Xu, Jinyan Li. Research Progress in High Power Tm 3+-Doped Silica Fiber Lasers [J]. Laser & Optoelectronics Progress, 2018, 55(5): 050004.

参考文献

[1] 刘江, 刘昆, 谭方舟, 等. 百瓦级全光纤掺铥光纤激光器及超荧光光源[J]. 中国激光, 2014, 41(4): 0402005.

    Liu J, Liu K, Tan F Z, et al. Hundred-watt-level all-fiber thulium-doped fiber laser and superfluorescent source[J]. Chinese Journal of Lasers, 2014, 41(4): 0402005.

[2] LiangS, XuL, FuQ, et al. Highpeak power picosecond pulses from an all-fiber master oscillator power amplifier seeded by a 1.95 μm gain-switched diode[C]. Advanced Solid State Lasers, 2017: ATh3A. 4.

[3] 张秀娟, 段云锋, 赵水, 等. 高效率1018 nm全光纤激光器实验研究[J]. 光学学报, 2016, 36(4): 0414002.

    Zhang X J, Duan Y F, Zhao S, et al. Experimental study on high efficient all-fiber lasers at 1018 nm[J]. Acta Optica Sinica, 2016, 36(4): 0414002.

[4] Sims R A, Kadwani P, Shah A S, et al. 1 μJ, sub-500 fs chirped pulse amplification in a Tm-doped fiber system[J]. Optics Letters, 2013, 38(2): 121-123.

[5] 李强, 何炳阳. 激光对人眼的损伤分析[ C]∥全国第十四届红外加热暨红外医学发展研讨会论文及论文摘要集, 2013.

    LiQ, He BY. Analysis of laser injury on eyes[ C]∥The 14th National Seminar on Infrared Heating and Infrared Medical Development Set of Papers and Abstraction, 2013.

[6] Xia S J. Two-micron (thulium) laser resection of the prostate-tangerine technique: a new method for BPH treatment[J]. Asian Journal of Andrology, 2009, 11(3): 277-281.

[7] 杨昆, 任秋实, 魏石刚, 等. 2 μm铥(Tm)激光器在生物医学中的应用[J]. 激光与光电子学进展, 2005, 42(9): 52-56.

    Yang K, Ren Q S, Wei S G, et al. Application of 2 μm Tm laser on biomedicine[J]. Laser & Optoelectronics Progress, 2005, 42(9): 52-56.

[8] LubatschowskiH, FiebigM, FuhrbergP, et al. Characterization of tissue processing with a continuous-wave Tm∶YAG laser at 2.06-μm wavelength[C]. SPIE, 1998, 3254: 249- 253.

[9] Wilson CR, Hardy LA, Irby PB, et al. Thulium fiber laser damage to the ureter[C].SPIE, 2015, 9542: 95420C.

[10] Leindecker N, Marandi A, Byer R L, et al. Octave-spanning ultrafast OPO with 2.6-6.1 μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser[J]. Optics Express, 2012, 20(7): 7046-7053.

[11] ElderI. High average power thulium fiber laser pumped mid-IR source[C]. SPIE.2007, 6738: 673804.

[12] Kieleck C, Berrou A, Donelan B, et al. 6.5 W ZnGeP2 OPO directly pumped by a Q-switched Tm 3+-doped single-oscillator fiber laser [J]. Optics Letters, 2015, 40(6): 1101-1104.

[13] Gebhardt M, Gaida C, Kadwani P, et al. High peak-power mid-infrared ZnGeP2 optical parametric oscillator pumped by a Tm:fiber master oscillator power amplifier system[J]. Optics Letters, 2014, 39(5): 1212-1215.

[14] Liu K, Liu J, Shi H, et al. High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power[J]. Optics Express, 2014, 22(20): 24384-24391.

[15] Swiderski J, Michalska M, Maze G. Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system[J]. Optics Express, 2013, 21(7): 7851-7857.

[16] HoneaE, Savage-LeuchsM, Bowers MS, et al. Pulsed blue laser source based on frequency quadrupling of a thulium fiber laser[C]. SPIE, 2013, 8601: 860111.

[17] Hanna D C, Jauncey I M, Percival R M, et al. Continuous-wave oscillation of a monomode thulium-doped fibre laser[J]. Electronics Letters, 1988, 24(19): 1222-1223.

[18] EhrenreichT, LeveilleR, MajidI, et al. 1-kW, all-glass Tm:fiber laser[C]. SPIE, 2010, 7580: 758016.

[19] GaidaC, StutzkiF, GebhardtM, et al. 200 MW peak power from a Tm-doped fiber CPA system[C]. Advanced Solid State Lasers, Optical Society of America, 2014: ATu5A. 2.

[20] Wang Q, Geng J, Luo T, et al. Mode-locked 2 μm laser with highly thulium-doped silicate fiber[J]. Optics Letters, 2009, 34(23): 3616-3618.

[21] Shardlow PC, JainD, ParkerR, et al. Optimizing Tm-doped silica fibres for high lasing efficiency[C]. The European Conference on Lasers and Electro-Optics, Optical Society of America, 2015: CJ_14_3.

[22] 冯高锋, 杨军勇, 马静, 等. 双包层掺铥光纤的研制[J]. 现代传输, 2013( 4): 59- 61.

    Feng GF, Yang JY, MaJ, et al. Fabrication of double-clad thulium doped fiber[J]. Modern Transmission, 2013( 4): 59- 61.

[23] Lee Y W, Ling H Y, Lin Y H, et al. Heavily Tm 3+-doped silicate fiber with high gain per unit length [J]. Optical Materials Express, 2015, 5(3): 549-557.

[24] Geng J, Wang Q, Luo T, et al. Single-frequency narrow-linewidth Tm-doped fiber laser using silicate glass fiber[J]. Optics Letters, 2009, 34(22): 3493-3495.

[25] Darwich D, Dauliat R, Jamier R, et al. 50.4% slope efficiency thulium-doped large-mode-area fiber laser fabricated by powder technology[J]. Optics Letters, 2016, 41(2): 384-387.

[26] Mortensen N A. Effective area of photonic crystal fibers[J]. Optics Express, 2002, 10(7): 341-348.

[27] Kadwani P, Modsching N, Sims R A, et al. Q-switched thulium-doped photonic crystal fiber laser[J]. Optics Letters, 2012, 37(10): 1664-1666.

[28] GaidaC, GebhardtM, KadwaniP, et al. Amplification of ns-pulses beyond 1 MW-peak power in Tm 3+-doped photonic crystal fiber rod [C]. 2013 Conference on Lasers and Electro-Optics (CLEO), IEEE, 2013: 1- 2.

[29] SlobodtchikovE, Moulton PF, FrithG. Efficient, high-power, Tm-doped silica fiber laser[C]. Advanced Solid-State Photonics, Optical Society of America, 2007: MF2.

[30] MeleshkevichM, PlatonovN, GapontsevD, et al. 415 W single-mode CW thulium fiber laser in all-fiber format[C]. European Conference on Lasers and Electro-Optics, 2007 and the International Quantum Electronics Conference, CLEOE-IQEC 2007, IEEE, 2007.

[31] Moulton P F, Rines G A, Slobodtchikov E V, et al. Tm-doped fiber lasers: fundamentals and power scaling[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1): 85-92.

[32] Ying-Bin X, Lei L, Fan B, et al. Fabrication of Tm-doped fibers for high power and 121 W output all-fiber Tm-doped fiber laser[J]. Chinese Physics Letters, 2015, 32(3): 034204.

[33] Hu Z Y, Yan P, Xiao Q R, et al. 227-W output all-fiberized Tm-doped fiber laser at 1908 nm[J]. Chinese Physics B, 2014, 23(10): 104206.

[34] Walbaum T, Heinzig M, Schreiber T, et al. Monolithic thulium fiber laser with 567 W output power at 1970 nm[J]. Optics Letters, 2016, 41(11): 2632-2635.

[35] McComb T S, Sims R A, Willis C C C, et al. . High-power widely tunable thulium fiber lasers[J]. Applied Optics, 2010, 49(32): 6236-6242.

[36] Creeden D, Johnson B R, Rines G A, et al. High power resonant pumping of Tm-doped fiber amplifiers in core- and cladding-pumped configurations[J]. Optics Express, 2014, 22(23): 29067-29080.

[37] Liu J, Shi H, Liu K, et al. 210 W single-frequency, single-polarization, thulium-doped all-fiber MOPA[J]. Optics Express, 2014, 22(11): 13572-13578.

[38] Wang X, Jin X, Wu W, et al. 310-W single frequency Tm-doped all-fiber MOPA[J]. IEEE Photonics Technology Letters, 2015, 27(6): 677-680.

[39] Yang C, Ju Y, Yao B, et al. High-power Tm 3+-doped all-fiber laser operating at 1908 nm by a master oscillator power amplifier configuration with narrow spectral linewidth [J]. Chinese Optics Letters, 2016, 14(6): 061403.

[40] AndersonB, FloresA, GrosekJ, et al. High power Tm-doped all-fiber amplifier at 2130 nm[C]. CLEO: Science and Innovations, Optical Society of America, 2017: SM1L. 3.

[41] YaoW, ShaoZ, ShenC, et al. 400 W all-fiberized Tm-doped MOPA at 1941 nm with narrow spectral linewidth[C]. Laser Applications Conference, Optical Society of America, 2017: JTu2A. 33.

[42] 刘江, 谭方舟, 刘晨, 等. 高功率超短脉冲掺铥光纤激光器的研究进展[J]. 中国激光, 2017, 44(2): 0201003.

    Liu J, Tan F Z, Liu C, et al. Progress on high-power ultrashort-pulsed thulium-doped fiber lasers[J]. Chinese Journal of Lasers, 2017, 44(2): 0201003.

[43] GaidaC, GebhardtM, KadwaniP, et al. Amplification of ns-pulses beyond 1 MW-peak power in Tm 3+-doped photonic crystal fiber rod [C]. 2013 Conference on Lasers and Electro-Optics (CLEO), IEEE, 2013.

[44] Stutzki F, Gaida C, Gebhardt M, et al. 152 W average power Tm-doped fiber CPA system[J]. Optics Letters, 2014, 39(16): 4671-4674.

[45] Gaida C, Gebhardt M, Stutzki F, et al. Thulium-doped fiber chirped-pulse amplification system with 2 GW of peak power[J]. Optics Letters, 2016, 41(17): 4130-4133.

[46] GebhardtM, GaidaC, StutzkiF, et al. High-average power, 4 GW pulses with sub-8 optical cycles from a Tm-doped fiber laser driven nonlinear pulse compression stage[C]. SPIE, 2017, 10083: 100830B.

[47] 刘江, 刘晨, 师红星, 等. 203 W全光纤全保偏结构皮秒掺铥光纤激光器[J]. 物理学报, 2016, 65(19): 194208.

    Liu J, Liu C, Shi H X, et al. 203 W all-polarization-maintaining picosecond thulium-doped all-fiber laser[J]. Acta Physica Sinica, 2016, 65(19): 194208.

[48] Ouyang D, Zhao J, Zheng Z, et al. Repetition-rate-switchable and self mode-locked pulses generation from a gain-switched thulium-doped fiber laser and their amplification properties[J]. IEEE Photonics Journal, 2017, 9(4): 1503710.

[49] 杨昌盛, 陈丹, 赵齐来, 等. 2.0 μm波段掺铥连续单频光纤激光器的研究进展[J]. 中国激光, 2017, 44(2): 0201006.

    Yang C S, Chen D, Zhao Q L, et al. Research progress of 2.0 μm-band Tm-doped continuous wave single-frequency fiber lasers[J]. Chinese Journal of Lasers, 2017, 44(2): 0201006.

[50] 胡志涛, 何兵, 周军, 等. 高功率光纤激光器热效应的研究进展[J]. 激光与光电子学进展, 2016, 53(8): 080002.

    Hu Z T, He B, Zhou J, et al. Research progress in thermal effect of high power fiber lasers[J]. Laser & Optoelectronics Progress, 2016, 53(8): 080002.

[51] 王璞, 刘江. 2.0 μm掺铥超短脉冲光纤激光器研究进展及展望[J]. 中国激光, 2013, 40(6): 0601002.

    Wang P, Liu J. Progress and prospect on ultrafast Tm-doped fiber lasers at 2 μm wavelength[J]. Chinese Journal of Lasers, 2013, 40(6): 0601002.

刘茵紫, 邢颍滨, 徐中巍, 李进延. 高功率掺铥石英光纤激光器研究进展[J]. 激光与光电子学进展, 2018, 55(5): 050004. Yinzi Liu, Yingbin Xing, Zhongwei Xu, Jinyan Li. Research Progress in High Power Tm 3+-Doped Silica Fiber Lasers [J]. Laser & Optoelectronics Progress, 2018, 55(5): 050004.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!