红外与毫米波学报, 2018, 37 (4): 445, 网络出版: 2019-01-10   

基于多角度偏振信息反演海洋上空卷云云顶高度

Retrieval of cirrus cloud top height over ocean based on multi-angle polarized information
作者单位
1 中国科学院安徽光学精密机械研究所 通用光学定标与表征技术重点实验室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
摘要
采用偏振辐射信息反演云顶高度时, 为了减小由云层及地表偏振辐射特性变化带来的反演结果不确定度, 使用490 nm和865 nm通道多角度偏振信息反演卷云云顶高度.理论分析大气顶偏振特征, 给出490 nm与865 nm通道偏振特性差异, 说明使用此两通道偏振反射率差反演云顶高度的可行性.假设卷云为一般种类混合模型(General Habit Mixture, GHM), 使用倍加累加矢量辐射传输模型计算和分析大气顶490 nm和865 nm通道偏振反射率差对卷云有效粒子半径、光学厚度和云顶压强的敏感性.分析表明, 当卷云光学厚度大于3时, 偏振反射率差对有效粒子半径和光学厚度的变化不敏感, 对云顶压强变化敏感.根据敏感性分析结果选择适当的参数构建偏振反射率差查找表, 使用查找表方法反演POLDER3数据的卷云云顶高度, 并与POLDER3产品和MODIS产品进行比较.结果表明, 与POLDER3的官方算法相比, 使用偏振反射率差查找表方法有更宽的散射角适用范围, 反演结果与MODIS产品有更好的一致性.
Abstract
Cloud top height could be retrieved by polarized information. In order to reduce the uncertainty of retrieval results caused by the variability of cloud and surface polarized properties, the multi-angle polarized information of 490 nm band and 865 nm band was used to retrieve cirrus cloud top height. Atmospheric top polarized information and the differences of atmospheric top polarized information between 490 nm band and 865nm band was theoretically analyzed, which showed that it was feasible to retrieve cirrus cloud top height using polarized reflectance difference between 490 nm band and 865 nm band. Cirrus cloud was assumed as General Habit Mixture (GHM) model, the polarized reflectance difference was evaluated by the vector radiative transfer model based on adding-doubling method, and the sensitivity of polarized reflectance to cirrus cloud effective radius, optical thickness and cloud top pressure were evaluated. The results show that when the cirrus cloud optical thickness is greater than 3, the polarized reflectance difference is not sensitive to the change of effective particle radius and optical thickness, and is sensitive to the change of cloud top pressure. The polarized reflectance difference look-up table was constructed by choosing appropriate parameters according to sensitivity analysis, and retrieved cirrus cloud top heights using look-up table method base on POLDER3 data. The retrieval results were compared with POLDER3 product and MODIS product. The results indicate that compared with the official POLDER3 algorithm, the polarized reflectance difference look-up table method could applied to a wider scattering angle range, and had a better consistency with MODIS product.
参考文献

[1] MA Shuo, HUANG Yun-Xian, YAN Wei, et al. The stereo mapping method of three-line for cloud detection[J]. J. Infrated Millim. Waves (马烁, 黄云仙,严卫, 等. 三线阵云立体探测技术. 红外与毫米波学报), 2014, 33(2):164-171.

[2] Nieman S J, Schmetz J, Menzel W P. A comparison of several techniques to assign heights to cloud tracers[J]. Journal of Applied Meteorology, 1993, 32(9):1559-1568.

[3] Menzel W P, Frey R A, Zhang H, et al. MODIS global cloud-top pressure and amount estimation: Algorithm description and results[J]. Journal of Applied Meteorology & Climatology, 2008, 47(4):1175-1198.

[4] O'Brien D M, Mitchell R M. Error estimates for retrieval of cloud-top pressure using absorption in the a band of oxygen[J]. Journal of Applied Meteorology, 1992, 31(10):1179-1192.

[5] Goloub P, Deuze J L, Herman M, et al. Analysis of the POLDER polarization measurements performed over cloud covers[J]. IEEE Transactions on Geoscience & Remote Sensing, 1994, 32(1):78-88.

[6] He X, Pan D, Yan B, et al. Cloud-top height retrieval from polarizing remote sensor POLDER[J]. Geoinformatics Remotely Sensed Data & Information, 2006, 6419:641922-641922-11.

[7] C.-Labonnote L, Brogniez G, Buriez J C, et al. Polarized light scattering by inhomogeneous hexagonal monocrystals: Validation with ADEOS-POLDER measurements[J]. Journal of Geophysical Research, 2001, 106(D11):12139-12153.

[8] Yang P, Bi L, Baum B A, et al. Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2μm to100μm[J]. J Atmos Sci, 2013, 70:330-47.

[9] Cole B H, Yang P, Baum B A, et al. Comparison of PARASOL observations with polarized reflectances simulated using different ice habit mixtures[J]. Journal of Applied Meteorology & Climatology, 2013, 52(1):186-196.

[10] Baum B A, Yang P, Heymsfield A J, et al. Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100μm[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2014, 146(2014): 123-139.

[11] GU Xing-Fa, CHENG Tian-Hai, LI Zheng-Qiang, et al. Atmospheric aerosol polarized remote sensing[M]. Beijing: Higher Education Press (顾行发, 程天海, 李正强等. 大气气溶胶偏振遥感[M]. 北京: 高等教育出版社), 2015: 1-18.

[12] Liou K N. An Introduction to Atmospheric Radiation[M]. California: Academic Press, 2002:275-346.

[13] CHENG Tian-Hai, GU Xing-Fa, YU Tao, et al. Multi-angle polarized radiation characteristics of water clouds[J]. J. Infrated Millim. Waves (程天海, 顾行发, 余涛, 等. 水云多角度偏振辐射特性研究. 红外与毫米波学报), 2009, 28(4):267-271.

[14] CHEN Xing-Feng, GU Xing-Fa, CHENG Tian-Hai, et al. Simulation and analysis of polarization characteristics for real sea surface sunglint[J]. Spectroscopy and Spectral Analysis (陈兴峰, 顾行发, 程天海, 等. 真实海洋表面的太阳耀光偏振辐射特性仿真与分析. 光谱学与光谱分析), 2011, 31(6):1648-1653.

[15] Evans K F, Stephens G L. A new polarized atmospheric radiative transfer model[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 1991, 46(5):413-423.

[16] Fougnie B, Lafrance B, Ruffel C, et al. PARASOL in-flight calibration and performance[J]. Applied Optics, 2007, 46(22):5435-5451.

李树, 孙晓兵, 提汝芳, 黄红莲, 陈震霆, 乔延利. 基于多角度偏振信息反演海洋上空卷云云顶高度[J]. 红外与毫米波学报, 2018, 37(4): 445. LI Shu, SUN Xiao-Bing, TI Ru-Fang, HUANG Hong-Lian, CHEN Zhen-Ting, QIAO Yan-Li. Retrieval of cirrus cloud top height over ocean based on multi-angle polarized information[J]. Journal of Infrared and Millimeter Waves, 2018, 37(4): 445.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!