强激光与粒子束, 2010, 22 (11): 2719, 网络出版: 2010-12-07   

Li+对Tb3+掺杂硅酸盐玻璃闪烁性能的影响

Effects of Li+ ions on luminescent properties of Tb3+doped silicate glasses
作者单位
同济大学 波耳固体物理研究所, 上海市特殊人工微结构材料与技术重点实验室, 上海 200092
摘要
利用高温熔融法制备了Li+掺杂Tb3+激活硅酸盐闪烁玻璃。通过Li+掺杂Tb3+激活硅酸盐玻璃的紫外可见透射光谱、发射光谱和发光衰减时间谱, 研究了Li+的加入对Tb3+掺杂硅酸盐玻璃发光性能的影响。结果表明: 适量Li+的加入可有效增强Tb3+激活硅酸盐玻璃的发光强度, 且相比于不掺杂Li+的Tb3+掺杂硅酸盐玻璃而言, 当掺入质量分数为2.0%的Li+时, Tb3+在玻璃中的最佳掺杂质量分数由12.8%提高至15.3%。其原因是Li+掺杂增加了玻璃体系中非桥氧的数量, 从而有利于改善Tb3+在玻璃体中的均匀性, 降低Tb3+间因非辐射跃迁而引起的能量损失, 以及提高Tb3+的最佳掺杂质量分数。但当掺入Li+的质量分数超过2.0%时, 会对Tb3+激活硅酸盐玻璃的闪烁光强产生负面影响, 这是因为过多的非桥氧阻碍了X射线激发能达到Tb3+离子的能量传递。
Abstract
The Tb3+-doped silicate glasses with and without Li+ ions were synthesized by high-temperature melting method. The effects of Li+ ions on the luminescent properties of Tb3+-doped silicate glasses were studied with ultraviolet-visible transmission, emission and decay time spectra. The results show that the Li+ ion co-dopant can increase the emission intensity of Tb3+-doped silicate glasses. Additionally, the optimal Tb3+ dopant concentration can be raised from 12.8% to 15.3% in the silicate glasses with 2.0% Li+ ion co-dopant compared to those without Li+ ions. The reason is tentatively ascribed to nonbridge oxygen. The nonbridge oxygen is propitious to uniform distribution of Tb3+ ions, thereby its increase reduces the energy loss due to nonradiative transition within Tb3+ ions and increases the optimal Tb3+ dopant concentration. However, the emission intensities of Tb3+ ions will decrease under X-ray excitation when the concentration of Li+ ions is beyond 2.0% since the Li+ ion probably result in too much nonbridge oxygen, which is considered as the defect to restrain the energy transfer to Tb3+ ions.
参考文献

[1] Weber M J. Inorganic scintillators: today and tomorrow[J]. Journal of Luminescence, 2002, 100(11): 35-45.

[2] Van Eijk C W E. Inorganic-scintillator development[J]. Nuclear Instruments and Methods in Physics Research A, 2001, 460(1): 1-14.

[3] Rodnyi P A. Physical processes in inorganic scintillators[M]. New York: Contemporary Roman Catholics Press, 1997: 11-12.

[4] Bettinelli M, Ingeletto G, Polato P. Optical spectroscopy of Ce3+, Tb3+ and Eu3+ in new scintillating glass[J]. Physics and Chemistry of Glasses, 1996, 37(1): 4-8.

[5] 陈洁, 祖成奎, 陈江, 等. Tb3+激活硅酸盐发光玻璃的研究进展[J]. 玻璃与搪瓷, 2002, 30(2): 36-40. (Chen Jie, Zu Chengkui, Chen Jiang, et al. Development of research on Tb3+-activated silicate luminescence glasses. Glass and Enamel, 2002, 30(2): 36-40)

[6] 赵宏生, 周万城. 闪烁玻璃的研究进展[J]. 材料导报, 2001, 15(1): 26-27. (Zhao Hongsheng, Zhou Wancheng. Progress in research on scintillating glasses. Materials Review, 2001, 15(1): 26-27)

[7] 赵凤刚, 汪国年, 胡丽丽. 闪烁玻璃的研究进展[J]. 硅酸盐通报, 2006, 25(5): 123-127. (Zhao Fenggang, Wang Guonian, Hu Lili. Progress in research on scintillating glasses. Bulletin of the Chinese Ceramic Society, 2006, 25(5): 123-127)

[8] Almeida R M, Vasconcelos H C, Goncalves M C, et al. XPS and NEXAFS studies of rare-earth doped amorphous sol-gel films[J]. Journal of Non-Crystalline Solids, 1998, 232-234: 65-71.

[9] Silversmith A J, Boye D M, Brewer K S, et al. 5D3→7FJ emission in terbium-doped sol-gel glasses[J]. Journal of Luminescence, 2006, 121(1): 14-20.

[10] Zhong Huicai, Cai Weiping, Zhang Lide. Fluorescence properties of Tb3+ ions in SiO2 glass codoped with Al3+[J]. Materials Research Bulletin, 1999, 34(2): 233-238.

[11] 江孝国, 顾镇南. 新型掺Tb3+硅酸盐发光玻璃的研制[J]. 强激光与粒子束, 2005, 17(3): 325-329. (Jiang Xiaoguo, Gu Zhennan. A new type Tb3+ doped silicate luminescent glass. High Power Laser and Particle Beams, 2005, 17(3): 325-329)

[12] 干福熹. 光学玻璃[M]. 北京: 科学出版社, 1985: 45. (Gan Fuxi. Opitcal glasses. Beijing: Science Press, 1985: 45)

[13] 周秦岭, 刘丽英, 徐雷, 等. 近红外飞秒激光在纯石英玻璃中诱导产生点缺陷结构[J]. 激光与光电子学进展, 2003, 40(9): 20-24. (Zhou Qinling, Liu Liying, Xu Lei, et al. The defects in amorphous silica under infrared femtosecond laser irradiation. Laser and Optoelectronics Progress, 2003, 40(9): 20-24)

[14] Tsuboi T. Optical properties of Ce3+/Tb3+-codoped borosilicate glass[J]. The European Physical Journal Applied Physics, 2004, 26(2): 95-101.

[15] Duffy J A, Ingram M D. An interpretation of glass chemistry in terms of the optical basicity concept[J]. Journal of Non-Crystalline Solids, 1976, 21(3): 373-410.

[16] 陈国荣, Baccaro S, 聂佳相, 等. 稀土离子(Ce3+, Tb3+, Pr3+) 掺杂重金属锗酸盐玻璃的光谱透过及抗辐射性能[J]. 硅酸盐学报, 2003, 31(7): 673-677. (Chen Guorong, Baccaro S, Nie Jiaxiang, et al. Optical characterization of rare earths (Ce3+, Tb3+, Pr3+) doped heavy metal germanite glasses before and after irradiation. Journal of the Chinese Ceramic Society, 2003, 31(7): 673-677)

[17] Hoaksey A, Woods J, Taylor K N R. Luminescence of Tb3+ ions in silicate glasses[J]. Journal of Luminescence, 1978, 17(4): 385-400.

[18] Shulgin B V, Taylor K N R, Hoaksey A, et al. Optical characteristics of Tb3+ ions in soda glass[J]. Journal of Physics C: Solid State Physics, 1972, 55(13): 1716-1726.

[19] 饶金华, 杨云霞, 袁双龙, 等. Gd3+-Tb3+能量转移与Tb3+自敏化效应对重金属锗酸盐玻璃发光性能的影响[J]. 功能材料, 2005, 36(1): 109-111. (Rao Jinhua, Yang Yunxia, Yuan Shuanglong, et al. Effects of Gd3+-Tb3+ energy transfer and Tb3+ self-sensitization on luminescent properties of Tb3+-doped heavy germanite glasses. Journal of Functional Materials, 2005, 36(1): 109-111)

[20] Pearson A D, Peterson G E, Northover W R. Tb3+ fluorescence and nonradiative energy transfer from Gd3+ to Tb3+ in borate glass[J]. Journal of Applied Physics, 1966, 37(2): 729-734.

[21] Alekseeva I P, Dmitryuk A V, Karapetyan G O, et al. Cross-relaxation quenching of Tb3+(5D3) luminescence in glasses[J].Journal of Applied Spectroscopy, 1977, 29(4): 1189-1194.

金鑫杰, 顾牡, 黄世明, 倪晨, 刘小林, 刘波. Li+对Tb3+掺杂硅酸盐玻璃闪烁性能的影响[J]. 强激光与粒子束, 2010, 22(11): 2719. Jin Xinjie, Gu Mu, Huang Shiming, Ni Chen, Liu Xiaolin, Liu Bo. Effects of Li+ ions on luminescent properties of Tb3+doped silicate glasses[J]. High Power Laser and Particle Beams, 2010, 22(11): 2719.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!