中国激光, 2021, 48 (6): 0602118, 网络出版: 2021-03-06   

铝箔的激光温冲击压印工艺及机理研究 下载: 882次

Technology and Mechanism on Warm Laser Shock Imprinting of Aluminum Foils
作者单位
1 中国矿业大学机电工程学院, 江苏 徐州 221116
2 中国矿业大学矿山机电装备江苏省重点实验室, 江苏 徐州 221116
引用该论文

杨海峰, 满家祥, 熊飞, 时明天. 铝箔的激光温冲击压印工艺及机理研究[J]. 中国激光, 2021, 48(6): 0602118.

Haifeng Yang, Jiaxiang Man, Fei Xiong, Mingtian Shi. Technology and Mechanism on Warm Laser Shock Imprinting of Aluminum Foils[J]. Chinese Journal of Lasers, 2021, 48(6): 0602118.

参考文献

[1] 刘亚鹏, 史志俊, 赵一昭, 等. 激光冲击与喷丸复合强化对TC4钛合金细节疲劳额定强度截止值的影响[J]. 中国激光, 2020, 47(5): 0502006.

    Liu Y P, Shi Z J, Zhao Y Z, et al. Cut-off value of detail fatigue rated strength of TC4 titanium alloy with compound strengthening treatment by laser shock peening and shot peening[J]. Chinese Journal of Lasers, 2020, 47(5): 0502006.

[2] Zhou J Z, Yang J C, Zhang Y K, et al. A study on super-speed forming of metal sheet by laser shock waves[J]. Journal of Materials Processing Technology, 2002, 129(1/2/3): 241-244.

[3] 汪军, 李民, 汪静雪, 等. 激光冲击强化对304不锈钢疲劳寿命的影响[J]. 中国激光, 2019, 46(1): 0102003.

    Wang J, Li M, Wang J X, et al. Effects of laser shock processing on fatigue life of 304 stainless steel[J]. Chinese Journal of Lasers, 2019, 46(1): 0102003.

[4] 田绪亮, 周建忠, 李京, 等. 深冷激光喷丸强化对2024-T351铝合金微观组织的影响[J]. 中国激光, 2019, 46(9): 0902004.

    Tian X L, Zhou J Z, Li J, et al. Effect of cryogenic laser peening on microstructure of 2024-T351 aluminum alloy[J]. Chinese Journal of Lasers, 2019, 46(9): 0902004.

[5] Liao Y L, Ye C, Kim B J, et al. Nucleation of highly dense nanoscale precipitates based on warm laser shock peening[J]. Journal of Applied Physics, 2010, 108(6): 063518.

[6] Zhou J Z, Meng X K, Huang S, et al. Effects of warm laser peening at elevated temperature on the low-cycle fatigue behavior of Ti6Al4V alloy[J]. Materials Science and Engineering: A, 2015, 643: 86-95.

[7] Cheng GJ, PirzadaD. Characterizations on microscale laser dynamic forming of metal foil[EB/OL] (2008-10-02)[2020-04-25] https://appliedmechanics.asmedigitalcollection.asme.org/MSEC/proceedings-abstract/MSEC2006/47624/29/319862.

[8] Liu H X, Shen Z B, Wang X, et al. Micromould based laser shock embossing of thin metal sheets for MEMS applications[J]. Applied Surface Science, 2010, 256(14): 4687-4691.

[9] Zheng C, Zhang X, Zhang Y L, et al. Effects of laser power density and initial grain size in laser shock punching of pure copper foil[J]. Optics and Lasers in Engineering, 2018, 105: 35-42.

[10] Gao H, Cheng G J. Laser-induced high-strain-rate superplastic 3-D microforming of metallic thin films[J]. Journal of Microelectromechanical Systems, 2010, 19(2): 273-281.

[11] Ehrhardt M. Processes at multi-pulse laser embossing of submicron surface structures[J]. Journal of Laser Micro, 2014, 9(3): 252-256.

[12] Gao H, Hu Y, Xuan Y, et al. Large-scale nanoshaping of ultrasmooth 3D crystalline metallic structures[J]. Science, 2014, 346(6215): 1352-1356.

[13] Yang H F, Xiong F, Liu K, et al. Research on temperature-assisted laser shock imprinting and forming stability[J]. Optics and Lasers in Engineering, 2019, 114: 95-103.

[14] Yang H F, Xiong F, Wang Y, et al. Manufacturing profile-free copper foil using laser shock flattening[J]. International Journal of Machine Tools and Manufacture, 2020, 152: 103542.

[15] Yang H F, Jia L, Liu K, et al. High precision complete forming process of metal microstructure induced by laser shock imprinting[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108(1/2): 143-155.

[16] 李应红, 何卫锋, 周留成. 激光冲击复合强化机理及在航空发动机部件上的应用研究[J]. 中国科学:技术科学, 2015, 45(1): 1-8.

    Li Y H, He W F, Zhou L C. The strengthening mechanism of laser shock processing and its application on the aero-engine components[J]. Scientia Sinica (Technologica), 2015, 45(1): 1-8.

[17] Wang Y, Xu J X, Zhang J, et al. Tribochemical reactions and graphitization of diamond-like carbon against alumina give volcano-type temperature dependence of friction coefficients: a tight-binding quantum chemical molecular dynamics simulation[J]. Carbon, 2018, 133: 350-357.

[18] 佟艳群. 激光去除金属氧化物的机理与应用基础研究[D]. 镇江: 江苏大学, 2014.

    Tong YQ. Study on mechanism and application fundamentals of laser removal of metal oxides[D]. Zhenjiang: Jiangsu University, 2014.

[19] 佟艳群, 陆勤慧, 周建忠, 等. 铝合金焊前激光清洗的等离子体光谱在线检测[J]. 光谱学与光谱分析, 2020, 40(1): 255-260.

    Tong Y Q, Lu Q H, Zhou J Z, et al. On‐line plasma spectrum detection of laser cleaning of aluminum alloy before welding[J]. Spectroscopy and Spectral Analysis, 2020, 40(1): 255-260.

[20] Lu J Z, Deng W W, Luo K Y, et al. Surface EBSD analysis and strengthening mechanism of AISI304 stainless steel subjected to massive LSP treatment with different pulse energies[J]. Materials Characterization, 2017, 125: 99-107.

[21] Fabbro R, Fournier J, Ballard P, et al. Physical study of laser-produced plasma in confined geometry[J]. Journal of Applied Physics, 1990, 68(2): 775-784.

[22] Nagarajan B, Castagne S, Wang Z K, et al. EBSD analysis of plastic deformation of copper foils by flexible pad laser shock forming[J]. Applied Physics A, 2015, 121(2): 695-706.

[23] An X H, Lin Q Y, Wu S D, et al. Significance of stacking fault energy on microstructural evolution in Cu and Cu-Al alloys processed by high-pressure torsion[J]. Philosophical Magazine, 2011, 91(25): 3307-3326.

杨海峰, 满家祥, 熊飞, 时明天. 铝箔的激光温冲击压印工艺及机理研究[J]. 中国激光, 2021, 48(6): 0602118. Haifeng Yang, Jiaxiang Man, Fei Xiong, Mingtian Shi. Technology and Mechanism on Warm Laser Shock Imprinting of Aluminum Foils[J]. Chinese Journal of Lasers, 2021, 48(6): 0602118.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!