Photonics Research, 2015, 3 (5): 05000275, Published Online: Jan. 6, 2016   

Faraday anomalous dispersion optical filter at 133Cs weak 459 nm transition Download: 578次

Author Affiliations
1 State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics Engineering and Computer Science, and Center for Quantum Information Technology, Peking University, Beijing 100871, China
2 State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract
A 459 nm Faraday anomalous dispersion optical filter (FADOF) working at the side wings of the cesium 6S1∕2 → 7P1∕2 transition with weak oscillator strength is achieved. The transmittance of the higher side wing reaches 98% at a temperature of 179°C and magnetic field above 323 G. The experimental results coincide with the theoretical predictions in 1982 and 1995, which were not realized in experiments for over three decades. Due to its high transmittance, high accuracy, and narrow linewidth, the 459 nm FADOF can be applied in underwater optical communications, the building of active optical clocks, and laser frequency stabilization in active optical clocks.
References

[1] Y. Ohman, “On some new auxiliary instruments in astrophysical research VI. A tentative monochromator for solar work based on the principle of selective magnetic rotation,” Stockholms Obs. Ann. 19, 9–11 (1956).

[2] P. P. Sorokin, J. R. Lankard, V. L. Moruzzi, and A. Lurio, “Frequency-locking of organic dye lasers to atomic resonance lines,” Appl. Phys. Lett. 15, 179–181 (1969).

[3] T. Endo, T. Yabuzaki, M. Kitano, T. Sato, and T. Ogawa, “Frequency-locking of a CW dye laser to the center of the sodium D lines by a Faraday filter,” IEEE J. Quantum Electron. 13, 866–871 (1977).

[4] P. Yeh, “Dispersive magnetooptic filters,” Appl. Opt. 21, 2069–2075 (1982).

[5] S. D. Harrell, C.-Y. She, T. Yuan, D. A. Krueger, H. Chen, S. S. Chen, and Z. L. Hu, “Sodium and potassium vapor Faraday filters revisited: theory and applications,” J. Opt. Soc. Am. B 26, 659–670 (2009).

[6] A. Popescu and T. Walther, “On the potential of Faraday anomalous dispersion optical filters as high-resolution edge filters,” Laser Phys. 15, 55–60 (2005).

[7] J. A. Zielin′ ska, F. A. Beduini, N. Godbout, and M. W. Mitchell, “Ultranarrow Faraday rotation filter at the Rb D1 line,” Opt. Lett. 37, 524–526 (2012).

[8] B. Yin and T. M. Shay, “Theoretical model for a Faraday anomalous dispersion optical filter,” Opt. Lett. 16, 1617–1619 (1991).

[9] B. Yin and T. M. Shay, “Faraday anomalous dispersion optical filter for the Cs 455 nm transition,” IEEE Photon. Technol. Lett. 4, 488–490 (1992).

[10] J. Menders, K. Benson, S. H. Bloom, C. S. Liu, and E. Korevaar, “Ultranarrow line filtering using a Cs Faraday filter at 852 nm,” Opt. Lett. 16, 846–848 (1991).

[11] M. A. Zentile, D. J. Whiting, J. Keaveney, C. S. Adams, and I. G. Hughes, “Atomic Faraday filter with equivalent noise bandwidth less than 1 GHz,” Opt. Lett. 40, 2000–2003 (2015).

[12] D. J. Dick and T. M. Shay, “Ultrahigh-noise rejection optical filter,” Opt. Lett. 16, 867–869 (1991).

[13] L. Weller, K. S. Kleinbach, M. A. Zentile, S. Knappe, I. G. Hughes, and C. S. Adams, “Optical isolator using an atomic vapor in the hyperfine Paschen–Back regime,” Opt. Lett. 37, 3405–3407 (2012).

[14] J. Tang, Q. Wang, Y. Li, L. Zhang, J. Gan, M. Duan, J. Kong, and L. Zheng, “Experimental study of a model digital space optical communication system with new quantum devices,” Appl. Opt. 34, 2619–2622 (1995).

[15] A. Popescu and T. Walther, “On an ESFADOF edge-filter for a range resolved Brillouin-lidar: the high vapor density and high pump intensity regime,” Appl. Phys. B 98, 667–675 (2010).

[16] A. Rudolf and T. Walther, “High-transmission excited-state Faraday anomalous dispersion optical filter edge filter based on a Halbach cylinder magnetic-field configuration,” Opt. Lett. 37, 4477–4479 (2012).

[17] A. Rudolf and T. Walther, “Laboratory demonstration of a Brillouin lidar to remotely measure temperature profiles of the ocean,” Opt. Eng. 53, 051407 (2014).

[18] R. C. Smith and J. E. Tyler, “Optical properties of clear natural water,” J. Opt. Soc. Am. 57, 589–594 (1967).

[19] X. Zhang, Z. Tao, C. Zhu, Y. Hong,W. Zhuang, and J. Chen, “An alloptical locking of a semiconductor laser to the atomic resonance line with 1 MHz accuracy,” Opt. Express 21, 28010–28018 (2013).

[20] X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Note: demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82, 086106 (2011).

[21] J. Chen, “Active optical clock,”Chin. Sci. Bull. 54, 348–352 (2009).

[22] W. Zhuang and J. Chen, “An active Faraday optical frequency standard,” Opt. Lett. 39, 6339–6342 (2014).

[23] J. Menders, P. Searcy, K. Roff, S. H. Bloom, and E. Korevaar, “Ultra-narrow linefiltering using a Cs Faraday filter at 455 nm,” in Proceedings of the International Conference on Lasers (1991).

[24] Y. Zhang, Y. Bi, X. Jiang, J. Yu, and Z. Ma, “Magneto-optical dispersion filter at the Cs 455, 459 nm transition,” Proc. SPIE 2893, 120–123 (1996).

[25] P. M. Stone, “Cesium oscillator strengths,” Phy. Rev. 127, 1151–1156 (1962). 26. L. Weller, R. J. Bettles, P. Siddons, C. S. Adams, and I. G. Hughes, “Absolute absorption on the rubidium D1 line including resonant dipole-dipole interactions,” J. Phys. B 44, 195006 (2011).

[26] M. A. Zentile, R. S. Mathew, D. J. Whiting, J. Keaveney, C. S. Adams, and I. G. Hughes, “Effect of line broadening on the performance of Faraday filters,” arXiv:1504.03651 (2015).

[27] D. Pan, Z. Xu, X. Xue, W. Zhuang, and J. Chen, “Lasing of cesium active optical clock with 459 nm laser pumping,” in Proceedings of 2014 IEEE International Frequency Control Symposium (FCS) (2014), pp. 242–245.

Xiaobo Xue, Duo Pan, Xiaogang Zhang, Bin Luo, Jingbiao Chen, Hong Guo. Faraday anomalous dispersion optical filter at 133Cs weak 459 nm transition[J]. Photonics Research, 2015, 3(5): 05000275.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!