激光技术, 2017, 41 (1): 124, 网络出版: 2017-01-17   

少模光纤通信系统中的自适应频域均衡算法

Adaptive frequency-domain equalization for few-mode fiber transmission systems
作者单位
天津大学 精密仪器与光电子工程学院 光电信息技术教育部重点实验室, 天津 300072
摘要
少模光纤模式复用存在模式耦合和差分模式时延, 必须通过自适应均衡算法补偿。为了降低长距离少模光纤通信系统中自适应均衡算法的复杂度, 采用基于变步长-频域块最小均方算法的多输入多输出均衡器对2×2模分复用系统解复用。利用频域块最小均方自适应算法修正均衡器权系数, 并通过变步长函数调整步长因子, 兼顾算法收敛速度和收敛性能。算法可通过快速傅里叶变换降低计算复杂度。在112Gbit/s的1000km少模光纤高速通信仿真系统中, 保证相同收敛速度情况下, 提高信号Q2因子3.7dB, 并在可编程现场门阵列上验证了100km少模光纤通信系统时的算法性能。结果表明, 该算法能够实现模分复用系统的信号解复用, 达到快速收敛、低稳态失调的目的。
Abstract
Modal crosstalk and differential mode delay in mode-division multiplexing in few-mode fiber must be compensated for with adaptive equalization algorithm. For the purpose of decreasing complexity of adaptive equalization algorithm in long-haul few-mode fiber communication system, a multiple-input multiple-output equalizer with variable step-size frequency-domain-block least mean square(VS-FBLMS) algorithm was proposed to uncouple a 2×2 mode-division multiplexing system. Compromising the conflicting requirements of convergence speed and convergence performance, FBLMS adaptive algorithm was employed to update equalizer taps and modify step-size factor with variable step-size function. Furthermore, the algorithm decreased the computational complexity by using fast Fourier transform. In a 112Gbit/s high-speed communication simulation system over 1000km in few-mode fiber, signal Q2 factor increased 3.7dB with same convergence speed. The performance of the algorithm was tested on field programmable gate array with a 100km few mode fiber communication system. The study demonstrates that the algorithm successfully uncouples the signals of mode-division multiplexing system and realizes fast convergence and low disorder.
参考文献

[1] RYF R, RANDEL S, GNAUCK A H, et al. Mode-division multiplexing over 96km of few-mode fiber using coherent 6×6 MIMO processing[J]. Journal of Lightwave Technology, 2012, 30(4):521-531.

[2] BAI N. Mode-division multiplexed transmission in few-mode fibers \[D\]. Orlando,USA: University of Central Florida Orlando, 2013: 9-20.

[3] YANG J, LIU M, ZHU M, et al. Three-core photonic crystal fiber with zero intermodal dispersion[J]. Laser Technology, 2015, 39(4):528-532(in Chinese).

[4] QIAN Y, LIU M, YANG J, et al. Analysis of coupling characteristics of square five-core photonic crystal fibers [J]. Laser Technology, 2014, 38(4): 455-458(in Chinese).

[5] HU G J,WANG Y P, RUI L,et al. Mode demultiplexing based on CMA under the condition of differential group delay[J]. Journal of Jilin University Engineering and Technology Edition, 2015,45(3):961-965(in Chinese).

[6] GRUNER-NIELSEN L, SUN Y, NICHOLSON J W, et al. few-mode transmission fiber with low DGD, low mode coupling and low loss[J]. Journal of Lightwave Technology, 2012, 30(23):3693-3698.

[7] FERREIRA F, FONSECA D, LOBATO A, et al. Reach improvement of mode division multiplexed systems using fiber splices[J]. IEEE Photonics Technology Letters, 2013, 25(12): 1091-1094.

[8] CAO X. Optimization of dispersion compensation in optical fiber communication systems[J]. Laser Technology, 2014, 38(1): 101-104(in Chinese).

[9] FAN Zh, WEN G Q, ZHOU H, et al. Research on dispersion compensation for OFDM signal fiber transmission [J]. Laser Technology, 2011, 35(1): 112-116(in Chinese).

[10] UDRN R G H, OKONKWO C M, SLEIFFER V, et al. Adaptive step size MIMO equalization for few-mode fiber transmission systems[J]. European Conference & Exhibition on Optical Communication, 2013, 22(1):1-3.

[11] RANDEL S, WINZER P. DSP for mode division multiplexing[C]// Optoelectronics and Communications Conference Held Jointly with 2013 International Conference on Photonics in Switching (OECC/PS), 2013 18th.New York,USA:IEEE,2013:1-2.

[12] YAMAN F, BAI N, ZHU B Y, et al. Long distance transmission in few-mode fibers[J]. Optics Express, 2010, 18(12): 13250-13257.

[13] BAI N, LI G F. Adaptive frequency-domain equalization for mode-division multiplexed transmission [J]. IEEE Photonics Technology Letters, 2012, 24(21): 1918-1921.

[14] RANDEL S, WINZER P J, MONTOLIU M, et al. Complexity analysis of adaptive frequency-domain equalization for MIMO-SDM transmission[C]// Optical Communication (ECOC 2013), 39th European Conference and Exhibition on IEEE.New York,USA:IEEE,2013:1-3.

[15] VUONG J, RAMANTANIS P, SECK A, et al. Understanding discrete linear mode coupling in few-mode fiber transmission systems[C]// Optical Communication (ECOC), 2011 37th European Conference and Exhibition on IEEE.New York,USA:IEEE, 2011:1-3.

[16] SHI J. Study on mode division multiplexing technology in few-mode fiber \[D\].Changchun:Jilin University, 2013 : 17-47(in Chinese).

[17] FARUK M S, KIKUCHI K. Adaptive frequency-domain equalization in digital coherent optical receivers [J]. Optics Express, 2011, 19(13): 12789-12798.

[18] BAI N, IP E, LI M J, et al. Long-distance mode-division multiplexed transmission using normalized adaptive frequency domain equalization[C]//IEEE Photonics Society Summer Topical Meeting Series.New York,USA: IEEE,2013:135-136.

黄战华, 王云立, 李桂芳, 张珊. 少模光纤通信系统中的自适应频域均衡算法[J]. 激光技术, 2017, 41(1): 124. HUANG Zhanhua, WANG Yunli, LI Guifang, ZHANG Shan. Adaptive frequency-domain equalization for few-mode fiber transmission systems[J]. Laser Technology, 2017, 41(1): 124.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!