光学学报, 2018, 38 (1): 0105004, 网络出版: 2018-08-31   

硒化锌衬底表面仿生宽带增透微结构的设计及制作 下载: 6177次

Design and Fabrication of Bionic Broadband Antireflective Microstructure on Zinc Selenide
费亮 1,2崔云 2,*万冬云 1陈鹏 2,3徐姣 2,3
作者单位
1 上海大学材料科学与工程学院, 上海 200444
2 中国科学院上海光学精密机械研究所中科院强激光材料重点实验室, 上海 201800
3 中国科学院大学, 北京 100049
引用该论文

费亮, 崔云, 万冬云, 陈鹏, 徐姣. 硒化锌衬底表面仿生宽带增透微结构的设计及制作[J]. 光学学报, 2018, 38(1): 0105004.

Liang Fei, Yun Cui, Dongyun Wan, Peng Chen, Jiao Xu. Design and Fabrication of Bionic Broadband Antireflective Microstructure on Zinc Selenide[J]. Acta Optica Sinica, 2018, 38(1): 0105004.

参考文献

[1] KaraganovV, LawM, KaeslerM, et al. Engineering development of a directed IR countermeasure laser[C]. SPIE, 2004, 5615: 49.

[2] Qu Y, Kang Z H, Wang T J, et al. The detection of carbon monoxide by the second harmonic generation of CO2 laser[J]. Laser Physics Letters, 2006, 4(3): 238.

[3] 谭改娟, 谢冀江, 张来明, 等. 中波红外激光技术最新进展[J]. 中国光学, 2013, 6(4): 501-512.

    Tang G J, Xie J J, Zhang L M, et al. Recent progress in mid-infrared laser technology[J]. Chinese Optics, 2013, 6(4): 501-512.

[4] 柯常军, 孔心怡, 王然, 等. 中红外Fe∶ZnSe激光技术最新研究进展[J]. 红外与激光工程, 2016, 45(3): 0305002.

    Ke C J, Kong X Y, Wang R, et al. Research progress on mid-IR Fe∶ZnSe laser technology[J]. Infrared and Laser Engineering, 2016, 45(3): 0305002.

[5] 李豪, 易葵, 崔云, 等. 不同基底上SiO2薄膜红外波段的水吸收特性[J]. 中国激光, 2014, 41(7): 0707001.

    Li H, Yi K, Cui Y, et al. Substrate effects on the water absorption of infrared SiO2 film[J]. Chinese Journal of Lasers, 2014, 41(7): 0707001.

[6] Ko Y H, Yu J S. Design of hemi-urchin shaped ZnO nanostructures for broadband and wide-angle antireflection coatings[J]. Optics Express, 2011, 19(1): 297-305.

[7] Yao J K, Shao J D, He H B, et al. Effects of annealing on laser-induced damage threshold of TiO2/SiO2 high reflectors[J]. Applied Surface Science, 2007, 253(22): 8911-8914.

[8] Clapham P B, Hutley M C. Reduction of lens reflexion by the “Moth Eye” principle[J]. Nature, 1973, 244(5414): 281-282.

[9] Huang Y F, Chattopadhyay S, Jen Y J, et al. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures[J]. Nature Nanotechnology, 2007, 2(12): 770-774.

[10] Park H, Shin D, Kang G, et al. Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays[J]. Advanced Materials, 2011, 23(48): 5796-5800.

[11] Hobbs DS, MacLeod B D, Sabatino E, et al. Laser damage resistant anti-reflection microstructures for mid-infrared metal-ion doped ZnSe gain media[C]. SPIE, 2012, 8530: 85300P.

[12] McDaniel S, Hobbs D, MacLeod B, et al. . Cr∶ZnSe laser incorporating anti-reflection microstructures exhibiting low-loss, damage-resistant lasing at near quantum limit efficiency[J]. Optical Materials Express, 2014, 4(11): 2225-2232.

[13] Sanghera J, Florea C, Busse L, et al. Reduced Fresnel losses in chalcogenide fibers by using anti-reflective surface structures on fiber end faces[J]. Optics Express, 2010, 18(25): 26760-26768.

[14] ZollarsB, SavoyS, Xue QZ, et al. Performance measurements of infrared windows with surface structures providing broadband, wide-angle, antireflective properties[C]. SPIE, 2013, 8708: 87080Q.

[15] 尚鹏, 熊胜明. ZnSe衬底表面亚波长增透结构的设计及误差分析[J]. 中国激光, 2014, 41(1): 0116004.

    Shang P, Xiong S M. Design and error analysis of sub-wavelength antireflective micro-structure on surface of ZnSe substrate[J]. Chinese Journal of Lasers, 2014, 41(1): 0116004.

[16] 高永锋, 赵琼华, 许孝芳, 等. 光伏电池表面抛物锥阵列微结构的反射特性研究[J]. 中国激光, 2015, 42(8): 0808004.

    Gao Y F, Zhao Q H, Xu X F, et al. Research on reflection properties of silicon based solar cells with parabolic cone array structure[J]. Chinese Journal of Lasers, 2015, 42(8): 0808004.

[17] 董亭亭, 付跃刚, 陈驰, 等. 锗衬底表面圆柱形仿生蛾眼抗反射微结构的研制[J]. 光学学报, 2016, 36(5): 0522004.

    Dong T T, Fu Y G, Chen C, et al. Study on bionic moth-eye antireflective cylindrical microstructure on germanium substrate[J]. Acta Optica Sinica, 2016, 36(5): 0522004.

[18] Stavenga D G, Foletti S, Palasantzas G, et al. Light on the moth-eye corneal nipple array of butterflies[J]. Proceedings of the Royal Society of London B: Biological Sciences, 2006, 273(1587): 661-667.

[19] Lalanne P, Lemercier-Lalanne D. On the effective medium theory of subwavelength periodic structures[J]. Journal of Modern Optics, 1996, 43(10): 2063-2085.

[20] Yang Z Y, Zhu D Q, Zhao M, et al. The study of a nano-porous optical film with the finite difference time domain method[J]. Journal of Optics A, 2004, 6(6): 564-568.

[21] Katsidis C C, Siapkas D I. General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference[J]. Applied Optics, 2002, 41(19): 3978-3987.

[22] Moharam M G, Gaylord T K, Grann E B, et al. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings[J]. Journal of the Optical Society of America A, 1995, 12(5): 1068-1076.

[23] Isabella O, Solntsev S, Caratelli D, et al. 3-D optical modeling of thin-film silicon solar cells on diffraction gratings[J]. Progress in Photovoltaics: Research and Applications, 2013, 21(1): 94-108.

[24] Raguin D H, Morris G M. Antireflection structured surfaces for the infrared spectral region[J]. Applied Optics, 1993, 32(7): 1154-1167.

[25] KurisuK, HiraiT, UshiroT, et al. Beam-splitting ZnSe diffractive optical element[C]. SPIE, 2003, 4830: 313- 318.

费亮, 崔云, 万冬云, 陈鹏, 徐姣. 硒化锌衬底表面仿生宽带增透微结构的设计及制作[J]. 光学学报, 2018, 38(1): 0105004. Liang Fei, Yun Cui, Dongyun Wan, Peng Chen, Jiao Xu. Design and Fabrication of Bionic Broadband Antireflective Microstructure on Zinc Selenide[J]. Acta Optica Sinica, 2018, 38(1): 0105004.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!