Chinese Optics Letters, 2021, 19 (6): 060003, Published Online: Mar. 26, 2021   

Integrated thin film lithium niobate Fabry–Perot modulator [Invited] Download: 942次

Author Affiliations
State Key Laboratory of Optoelectronic Materials and Technologies and School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510000, China
Copy Citation Text

Mengyue Xu, Mingbo He, Yuntao Zhu, Lin Liu, Lifeng Chen, Siyuan Yu, Xinlun Cai. Integrated thin film lithium niobate Fabry–Perot modulator [Invited][J]. Chinese Optics Letters, 2021, 19(6): 060003.

References

[1] R. S. Weis, T. K. Gaylord. Lithium niobate: summary of physical properties and crystal structure. Appl. Phys. A, 1985, 37: 191.

[2] A. Honardoost, K. Abdelsalam, S. Fathpour. Rejuvenating a versatile photonic material: thin-film lithium niobate. Laser Photon. Rev., 2020, 14: 2000088.

[3] C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, M. Lončar. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 2018, 562: 101.

[4] StengerV. E.ToneyJ.PoNickA.BrownD.GriffinB.NelsonR.SriramS., “Low loss and low Vpi thin film lithium niobate on quartz electro-optic modulators,” in 2017 European Conference on Optical Communication (ECOC) (2017), p. 1.

[5] M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, X. Cai. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photon., 2019, 13: 359.

[6] X. Wang, P. O. Weigel, J. Zhao, M. Ruesing, S. Mookherjea. Achieving beyond-100-GHz large-signal modulation bandwidth in hybrid silicon photonics Mach Zehnder modulators using thin film lithium niobate. APL Photon., 2019, 4: 096101.

[7] S. Sun, M. He, M. Xu, X. Zhang, Z. Ruan, L. Zhou, L. Liu, L. Liu, S. Yu, X. Cai. High-speed modulator with integrated termination resistor based on hybrid silicon and lithium niobate platform. J. Lightwave Technol., 2020, 39: 1108.

[8] M. Xu, M. He, H. Zhang, J. Jian, Y. Pan, X. Liu, L. Chen, X. Meng, H. Chen, Z. Li, X. Xiao, S. Yu, S. Yu, X. Cai. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat. Commun., 2020, 11: 3911.

[9] L. Chen, Q. Xu, M. G. Wood, R. M. Reano. Hybrid silicon and lithium niobate electro-optical ring modulator. Optica, 2014, 1: 112.

[10] A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, P. Günter. Electro-optically tunable microring resonators in lithium niobate. Nat. Photon., 2007, 1: 407.

[11] A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, S. Fathpour. Heterogeneous microring and Mach–Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon. Opt. Express, 2015, 23: 22746.

[12] C. Wang, M. Zhang, B. Stern, M. Lipson, M. Loncar. Nanophotonic lithium niobate electro-optic modulators. Opt. Express, 2018, 26: 1547.

[13] A. N. R. Ahmed, S. Shi, A. J. Mercante, D. W. Prather. High-performance racetrack resonator in silicon nitride–thin film lithium niobate hybrid platform. Opt. Express, 2019, 27: 30741.

[14] M. R. Escalé, D. Pohl, A. Sergeyev, R. Grange. Extreme electro-optic tuning of Bragg mirrors integrated in lithium niobate nanowaveguides. Opt. Lett., 2018, 43: 1515.

[15] EscaléM. R.PohlD.HeniW.BaeuerleB.JostenA.SergeyevA.LeutholdJ.GrangeR., “Integrated electro-optic Bragg modulators in lithium niobate nanowaveguides,” in Advanced Photonics 2018 (2018), paper IW4I.4.

[16] J. Wang, P. Chen, D. Dai, L. Liu. Polarization coupling of X-cut thin film lithium niobate based waveguides. IEEE Photon. J., 2020, 12: 2200310.

[17] J. Jian, P. Xu, H. Chen, M. He, Z. Wu, L. Zhou, L. Liu, C. Yang, S. Yu. High-efficiency hybrid amorphous silicon grating couplers for sub-micron-sized lithium niobate waveguides. Opt. Express, 2018, 26: 29651.

[18] X. Xiao, X. Y. Li, H. Xu, Y. T. Hu, K. Xiong, Z. Y. Li, T. Chu, J. Z. Yu, Y. D. Yu. 44-Gb/s silicon microring modulators based on zigzag PN junctions. IEEE Photon. Technol. Lett., 2012, 24: 1712.

[19] G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, J. E. Cunningham. Ring resonator modulators in silicon for interchip photonic links. IEEE J. Sel. Top. Quantum Electron., 2013, 19: 3401819.

[20] T. Baba, S. Akiyama, M. Imai, N. Hirayama, H. Takahashi, Y. Noguchi, T. Horikawa, T. Usuki. 50-Gb/s ring-resonator-based silicon modulator. Opt. Express, 2013, 21: 11869.

[21] Y. Tong, Z. Hu, X. Wu, S. Liu, L. Chang, A. Netherton, C. Chan, J. E. Bowers, H. K. Tsang. An experimental demonstration of 160-Gbit/s PAM-4 using a silicon micro-ring modulator. IEEE Photon. Technol. Lett., 2019, 32: 125.

[22] M. Li, J. Ling, Y. He, U. A. Javid, S. Xue, Q. Lin. Lithium niobate photonic-crystal electro-optic modulator. Nat. Commun., 2020, 11: 4123.

[23] J. Muller, F. Merget, S. S. Azadeh, J. Hauck, S. R. Garcia, B. Shen, J. Witzens. Optical peaking enhancement in high-speed ring modulators. Sci. Rep., 2014, 4: 6310.

[24] H. Yu, D. Q. Ying, M. Pantouvaki, J. Van Campenhout, P. Absil, Y. L. Hao, J. Y. Yang, X. Q. Jiang. Trade-off between optical modulation amplitude and modulation bandwidth of silicon micro-ring modulators. Opt. Express, 2014, 22: 15178.

[25] M. Bahadori, Y. Yang, A. E. Hassanien, L. L. Goddard, S. Gong. Theory of coupled harmonics and its application to resonant and non-resonant electro-optic modulators. J. Lightwave Technol., 2020, 38: 5756.

[26] J. P. Salvestrini, L. Guilbert, M. Fontana, M. Abarkan, S. Gille. Analysis and control of the DC drift in LiNbO3-based Mach–Zehnder modulators. J. Lightwave Technol., 2011, 29: 1522.

[27] S. Sun, M. He, M. Xu, S. Gao, Z. Chen, X. Zhang, Z. Ruan, X. Wu, L. Zhou, L. Liu, C. Lu, C. Guo, L. Liu, S. Yu, X. Cai. Bias-drift-free Mach–Zehnder modulators based on a heterogeneous silicon and lithium niobate platform. Photon. Res., 2020, 8: 1958.

Mengyue Xu, Mingbo He, Yuntao Zhu, Lin Liu, Lifeng Chen, Siyuan Yu, Xinlun Cai. Integrated thin film lithium niobate Fabry–Perot modulator [Invited][J]. Chinese Optics Letters, 2021, 19(6): 060003.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!