激光与光电子学进展, 2017, 54 (4): 040006, 网络出版: 2017-04-19   

光纤布拉格光栅传感器交叉敏感问题的研究进展 下载: 828次

Progress in Cross Sensitivity of Fiber Bragg Grating Sensor
作者单位
上海电力学院电子与信息工程学院, 上海 200090
摘要
应变和温度等外界因素的变化会使光纤布拉格光栅(FBG)反射波的中心波长发生漂移。在应变传感测量中,根据中心波长的漂移量无法直接得到对应的应变量,这种应变和温度交叉敏感的问题严重制约着FBG传感器的测量精度和应用,阻碍了传感监测技术的实用化。为了消除温度的影响,各国研究人员根据不同算法、材料、封装结构等提出了多种解决方案。根据对温度的不同处理方法,将这些解决方案分为温度分离法和温度补偿法,并分析了每种方法的优缺点。
Abstract
The changes of external factors such as temperature and strain can cause the center wavelength drift of fiber Bragg grating (FBG) reflection wave. Strain cannot be directly measured according to the center wavelength drift in strain sensing measurement. The problem of temperature and strain cross sensitivity seriously restricts the measurement precision and the application of FBG sensor, which hinders the sensing monitoring technology to be practical. Many researchers have proposed various solutions to eliminate the influence of temperature according to different algorithms, materials, packaging structures, and so on. According to the different methods of temperature processing, the solutions can be divided into temperature separation method and temperature compensation method. The advantage and disadvantage of each method are analyzed.
参考文献

[1] 李国利, 李志全. 光纤光栅应变传感测量中的温度补偿问题[J]. 激光与光电子学进展, 2005, 42(4): 25-28.

    Li Guoli, Li Zhiquan. Research of the temperature compensation for strain sensing measurement of fiber Bragg grating[J]. Laser & Optoelectronics Process, 2005, 42(4): 25-28.

[2] 刘铁根, 王 双, 江俊峰, 等. 航空航天光纤传感技术研究进展[J]. 仪器仪表学报, 2014, 35(8): 1681-1692.

    Liu Tiegen, Wang Shuang, Jiang Junfeng, et al. Advances in optical fiber sensing technology for aviation and aerospace application[J]. Chinese Journal of Scientific Instrument, 2014, 35(8): 1681-1692.

[3] 梁文彬, 林玉池, 赵美蓉, 等. 光纤光栅在船舶结构状态检测中的应用[J]. 激光与红外, 2012, 42(6): 682-685.

    Liang Wenbin, Lin Yuchi, Zhao Meirong, et al. Applications of fiber Bragg grating in ship structrual minitoring[J]. Laser & Infrared, 2012, 42(6): 682-685.

[4] Li X X, Ren W X, Bi K M. FBG force-testing ring for bridge cable force monitoring and temperature compensation[J]. Sensors & Actuators A: Physical, 2015, 223: 105-113.

[5] 曹 靳, 徐 刚, 代玉堂, 等. 基于光纤传感器的压缩机状态监测[J]. 光学与光电技术, 2013, 11(1): 29-32.

    Cao Jin, Xu Gang, Dai Yutang, et al. Compressor status detection based on optical fiber sensors[J]. Optics & Optoelectronic Technology, 2013, 11(1): 29-32.

[6] 贾军虎. GMM-FBG交流电流传感系统的模型研究及实验分析[D]. 河北: 燕山大学, 2014: 15-46.

    Jia Junhu. The model research and experimental analysis on GMM-FBG AC current sensing system[D]. Hebei: Yanshan University, 2014: 15-46.

[7] 戚仕涛, 汤黎明, 刘铁兵, 等. 基于光纤光栅的超声传感器实验研究[J]. 北京生物医学工程, 2006, 25(4): 410-414.

    Qi Shitao, Tang Liming, Liu Tiebing, et al. The experimental study of ultrasound sensor based on fiber gratings[J]. Beijing Biomedical Engineering, 2006, 25(4): 410-414.

[8] 张桂花, 张丁丁, 李 毅, 等. 采矿模型的FBG传感器参数优化与应变传递[J]. 光通信技术, 2016, 40(7): 32-35.

    Zhang Guihua, Zhang Dingding, Li Yi, et al. Parameters optimization and strain transfer of FBG sensor for mining model[J]. Optical Communication Technology, 2016, 40(7): 32-35.

[9] 孙 健. 光纤光栅位移传感器在边坡监测中的应用研究[J]. 工矿自动化, 2014, 40(2): 95-98.

    Sun Jian. Application research of fiber grating displacement sensor in slope monitoring[J]. Industry and Mine Automation, 2014, 40(2): 95-98.

[10] 董兴法, 黄勇林, 郎科伟, 等. 光纤光栅型振动传感器中的温度补偿研究[J]. 半导体光电, 2004, 25(5): 404-407.

    Dong Xingfa, Huang Yonglin, Lang Kewei, et al. Temperature compensation in vibration sensor with fiber gratings[J]. Semiconductor Optoelectronics, 2004, 25(5): 404-407.

[11] 吴传福, 刘有信. 光纤光栅应变传感器温度补偿解决方案[J]. 红外, 2006, 27(4): 11-14.

    Wu Chuanfu, Liu Youxin. Solutions of temperature compensation of fiber grating strain sensors[J]. Infrared, 2006, 27(4): 11-14.

[12] 高龙集. 基于光纤Bragg光栅的光学电流互感器的研究[D]. 吉林: 东北电力大学, 2007: 17-21.

    Gao Longji. Research on a new optical current transducer based on fiber Bragg grating[D]. Jilin: Northeast Electric Power University, 2007: 17-21.

[13] 郭子学, 闫卫平, 杜国同, 等. 光纤Bragg光栅温度补偿方法的研究[J]. 光电子技术, 2006, 26(1): 49-52.

    Guo Zixue, Yan Weiping, Du Guotong, et al. Temperature compensation for fiber Bragg gratings[J]. Optoelectronic Technology, 2006, 26(1): 49-52.

[14] Sante R D, Bastianini F. Temperature-compensated fibre Bragg grating-based sensor with variable sensitivity[J]. Optics & Lasers in Engineering, 2015, 75: 5-9.

[15] 周国鹏. 光纤布拉格光栅传感器封装与应变/温度分离技术[D]. 南京: 南京航空航天大学, 2005: 43-49.

    Zhou Guopeng. Research on FBG sensor package technology and temperature/strain separation method[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2005: 43-49.

[16] 张 鹰. 光纤布拉格光栅传感器交叉敏感问题基础研究[D]. 吉林: 吉林大学, 2005: 40-44.

    Zhang Ying. The basic research on cross sensitivity of Fiber Bragg grating sensor[D]. Jilin: Jilin University, 2005: 40-44.

[17] Xu M G, Archambault J L, Reekie L, et al. Discrimination between strain and temperature effects using dual-wavelength fibre grating sensors[J]. Electronics Letters, 1994, 30(13): 1085-1087.

[18] Wang W, Jiang X, Yu Q. Temperature self-compensation fiber-optic pressure sensor based on fiber Bragg grating and Fabry-Perot interference multiplexing[J]. Optics Communications, 2012, 285(16): 3466-3470.

[19] 樊晓宇. 光纤光栅应变传感器温度补偿系统研究[J]. 光通信技术, 2012, 36(6): 7-9.

    Fan Xiaoyu. Study of FBG stain sensor temperature compensation system[J]. Optical Communication Technology, 2012, 36(6): 7-9.

[20] Li J, Sun B. Theory analysis of novel fiber Bragg grating temperature compensated method based on thermal stress[J]. High Power Laser & Particle Beams, 2015, 27(2): 024115.

[21] 黄 山, 赵华凤, 俞 涛, 等. 光纤光栅温度补偿桥式结构[J]. 半导体光电, 2003, 24(6): 439-453.

    Huang Shan, Zhao Huafeng, Yu Tao, et al. Bridge structure for FBG temperature compensation[J]. Semiconductor Optoelectronics, 2003, 24(6): 439-453.

[22] 魏 鹏, 李丽君, 郭俊强, 等. 光纤Bragg光栅应力传感中温度交叉敏感问题研究[J]. 应用光学, 2008, 29(1): 105-109.

    Wei Peng, Li Lijun, Guo Junqiang, et al. Cross sensitivity of temperature in fiber Bragg grating strain sensing[J]. Journal of Applied Optics, 2008, 29(1): 105-109.

[23] 俞 钢, 何赛灵. 一种新型的光纤光栅封装装置[J]. 光子学报, 2004, 33(3): 291-293.

    Yu Gang, He Sailing. A new package technique for fiber gratings[J]. Acta Photonica Sinica, 2004, 33(3): 291-293.

[24] Khan M M, Panwar N, Dhawan R. Modified cantilever beam shaped FBG based accelerometer with self temperature compensation[J]. Sensors & Actuators A: Physical, 2014, 205: 79-85.

[25] 余有龙, 关柏鸥, 董孝义, 等. 光纤光栅力传感器的无源温漂补偿技术[J]. 光学学报, 2000, 20(3): 400-404.

    Yu Youlong, Guang Boou, Dong Xiaoyi, et al. Passive temperature induced wavelength-shift compensating technique for fiber Bragg grating force sensing[J]. Acta Optica Sinica, 2000, 20(3): 400-404.

[26] Weidman D L, Beall G H, Chyung K C, et al. A novel negative expansion substrate material for athermalizing fiber Bragg gratings[C]. 22nd European Conference on Optical Communication, 1996: 5664586.

[27] Iwashima T, Inoue A, Shifgematsu M, et al. Temperature compensation technique for fiber Bragg gratings using liquid crystalline polymer tubes[J]. Electronics Letters, 1997, 33(5): 417-419.

[28] 王 艳, 闫卫平, 张玉书, 等. 基于负膨胀材料的光纤Bragg光栅温度补偿研究[J]. 仪器仪表学报, 2006, 27(6): 10-25.

    Wang Yan, Yan Weiping, Zhang Yushu, et al. Research of optical fiber Bragg grating temperature compensation based on negative thermal expansion[J]. Chinese Journal of Scientific Instrument, 2006, 27(6): 10-25.

[29] 杜彦良, 刘晨曦, 李剑芝. 具有温度自补偿功能的新型光纤光栅应变传感器的研究[J]. 中国工程机械学报, 2008, 6(1): 19-22.

    Du Yanliang, Liu Chenxi, Li Jianzhi. Investigation into new optical-fiber-grating strain sensors based on temperature compensation[J]. Chinese Journal of Construction Machinery, 2008, 6(1): 19-22.

[30] 谭强强, 张中太, 方克明. 复合氧化物负热膨胀材料研究进展[J]. 功能材料, 2003, 34(4): 353-356.

    Tan Qiangqiang, Zhang Zhongtai, Fang Keming. Developments of negative thermal expansion materials in complex oxides[J]. Functional Materials, 2003, 34(4): 353-356.

[31] Mora J, Diez A, Cruz J L, et al. A magnetostrictive sensor interrogated by fiber gratings for DC-current and temperature discrimination[J]. IEEE Photonics Technology Letters, 2001, 12(12): 1680-1682.

[32] García-Miquel H, Barrera D, Amat R, et al. Magnetic actuator based on giant magnetostrictive material Terfenol-D with strain and temperature monitoring using FBG optical sensor[J]. Measurement, 2016, 80: 201-206.

[33] Zhao H, Sun F F, Yang Y Q, et al. A novel temperature-compensated method for FBG-GMM current sensor[J]. Photonics Technology, 2013, 308: 64-69.

[34] 王 为, 林玉池. 表面式温度补偿型光纤光栅传感器研究[J]. 光电器件, 2009, 30(3): 362-365.

    Wang Wei, Lin Yuchi. Research on surface FBG sensors with temperature compensation[J]. Semiconductor Optoelectronics, 2009, 30(3): 362-365.

[35] 易本顺, 胡瑞敏, 朱子碧, 等. 磁致伸缩调制型光纤Bragg光栅的温度补偿方法[J]. 中国激光, 2002, 29(12): 1685-1688.

    Yi Benshun, Hu Ruimin, Zhu Zibi, et al. Temperature compensation techniques for fibre Bragg gratings tuned by magnetostrictive transducers[J]. Chinese J Lasers, 2002, 29(12): 1685-1688.

[36] 王雯珍, 刘月明. FBG应变传感器温度交叉敏感补偿技术研究[J]. 光电技术应用, 2014, 2(29): 51-56.

    Wang Wenzhen, Liu Yueming. Research on temperature cross sensitivity compensation technology of FBG strain sensor[J]. Electro-Optic Technology Application, 2014, 2(29): 51-56.

[37] Guan B O, Tam H Y, Tao X M, et al. Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating[J]. IEEE Photonics Technology Letters, 2000, 12(6): 675-677.

[38] Dias J A S, Ferreira E C, Leite R L. Electronic technique for temperature compensation of fibre Bragg gratings sensors[J]. AEU-International Journal of Electronics and Communications, 2008, 62(1): 72-76.

[39] James S W, Dockney M L. Simultaneous independent temperature and strain measurement using in-fibre Bragg grating sensors[J]. Electronics Letters, 1996, 32(12): 1133-1134.

[40] 马天兵, 赵耀军, 张 辉, 等. 基于Matlab的光纤电流传感器温度补偿研究[J]. 工矿自动化, 2009, 35(9): 62-64.

    Ma Tianbing, Zhao Yaojun, Zhang Hui, et al. Research of temperature compensation of optical fiber current sensor based on Matlab[J]. Industry and Mine Automation, 2009, 35(9): 62-64.

孙诗晴, 初凤红, 卢家焱. 光纤布拉格光栅传感器交叉敏感问题的研究进展[J]. 激光与光电子学进展, 2017, 54(4): 040006. Sun Shiqing, Chu Fenghong, Lu Jiayan. Progress in Cross Sensitivity of Fiber Bragg Grating Sensor[J]. Laser & Optoelectronics Progress, 2017, 54(4): 040006.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!