强激光与粒子束, 2019, 31 (9): 091001, 网络出版: 2019-10-12  

考虑结合部特征的150 mm口径反射镜模型修正

Model updating of a 150 mm mirror including joint parts
作者单位
1 中国工程物理研究院 应用电子学研究所, 四川 绵阳 621999
2 重庆大学 汽车工程学院, 重庆 400044
3 重庆大学 机械传动国家重点实验室, 重庆 400044
摘要
针对150 mm口径反射镜受结合部的非线性因素影响导致结构分析模型精度较差的问题,提出了线性的动力学等效建模与参数修正方法。首先,在实际装配和约束环境下测试并获得了反射镜结构的试验模态参数。然后,根据界面结合部的动力学特征,对反射镜结构按照镜框固定连接模型、镜面螺钉夹持模型以及间隙等效模型进行了等效建模。最后,以试验模态参数为修正目标,采用优化方法对反射镜结构的动力学等效模型进行了参数修正,并采用模型分层和分步修正的思路,依据结合部特征将修正模型细分为两部分,提高模型参数的修正效率。结果表明,参数修正后的固有频率平均误差为1.5%,模态置信度均大于0.8,提升了反射镜结构的动力学模型精度,验证了线性化等效建模方法的正确性。
Abstract
For the problem of precision deficiency of the analysis model caused by nonlinear factors of the joint parts in the 150 mm mirror, the equivalent linearized model and the model updating method were presented. First, the experimental modal parameters of the 150 mm mirror within 800 Hz were tested and obtained under the actual assembly and boundary conditions. Then, according to the dynamic characteristics of the interface joints, the equivalent finite element model of the mirror was classified as the connection model of fixed parts, the screw model and the equivalent gap model of the clamping parts, which were modeled by beam elements, rigid elements and spring elements. Finally, taking the measured experimental data including natural frequencies and modal shapes as the objective function, the dynamic model of the 150 mm mirror was corrected by using optimization method. At the same time, the modified model was divided into two parts according to the characteristics of the joints by adopting the idea of hierarchical and step-by-step modification to improve the efficiency of the correction process. The results indicate that the average error of natural frequencies within 800 Hz after model updating is 1.6%, and the minimum value of modal assurance criterion is greater than 0.8, which improves the accuracy of the dynamic model for the reflective mirror. And the equivalent linearized model is also verified.
参考文献

[1] 谢伟平, 曹晓宇, 肖伯强, 等. 基于模态测试的宽幅钢箱梁桥有限元模型建立、修正与分析[J]. 振动与冲击, 2018, 37(1): 98-105.(Xie Weiping, Cao Xiaoyu, Xiao Boqiang, et al. Finite element modeling, modification and analysis for wide steel box-girder bridges, based on modal tests. Journal of Vibration and Shock, 2018, 37(1): 98-105)

[2] Petersen  W, iseth O. Sensitivity-based finite element model updating of a pontoon bridge[J]. Engineering Structures, 2017, 150: 573-584.

[3] 杨毅晟, 刘宗政, 麻越垠, 等. 基于响应面方法的多喷嘴引射器有限元模型修正[J]. 机电工程, 2017, 34(12): 1376-1381.(Yang Yisheng, Liu Zhongzheng, Ma Yueyin, et al. Finite element model updating of multi-nozzle ejector based on response surface method. Journal of Mechanical and Electrical Engineering, 2017, 34(12): 1376-1381)

[4] 陈立恒, 吴清文, 董吉洪, 等. 基于中心复合设计的空间相机热计算参数修正[J]. 光学 精密工程, 2010, 18(9): 2009-2015.(Chen Liheng, Wu Qingwen, Dong Jihong, et al. Parameter correction of thermal analysis for space camera based on center composite design. Optics and Precision Engineering, 2010, 18(9): 2009-2015)

[5] 邢宏健, 张生, 杨波, 等. 基于模态试验的特种车驾驶室有限元模型修正[J]. 导弹与航天运载技术, 2018(2): 99-104.(Xing Hongjian, Zhang Sheng, Yang Bo, et al. Finite element model updating of special vehicle’s cab based on experimental modals. Missiles and Space Vehicles, 2018(2): 99-104)

[6] Yoshimura M. Computer-aided design improvement of machine tool structure incorporating joint dynamics data[J]. Annals of the CIRP, 1979, 28(1): 241-246.

[7] Tian H, Li B, Liu H, et al. A new method of virtual material hypothesis-based dynamic modeling on fixed joint interface in machine tools [J]. International Journal of Machine Tools & Manufacture, 2011, 51(3): 239-249.

[8] Kim J, Yoon J C, Kang B S. Finite element analysis and modeling of structure with bolted joints[J]. Applied Mathematical Modelling, 2007, 31(5): 895-911.

[9] 张政, 全旭松, 王辉, 等. 大口径激光传输反射镜低应力夹持工艺设计[J]. 光学学报, 2017, 37: 0114002.(Zhang Zheng, Quan Xusong, Wang Hui, et al. Low-stress mounting configuration design for large aperture laser transmission mirror. Acta Optica Sinica, 2017, 37: 0114002)

[10] 王克军,宣明,董吉洪,等. 空间遥感器反射镜组件结构设计方法[J]. 红外与激光工程, 2016, 45: 1113001. (Wang Kejun, Xuan Ming, Dong Jihong, et al. Design method of reflector component structure of space remote sensor. Infrared and Laser Engineering, 2016, 45: 1113001)

[11] Liang Y, Su R, Liu H, et al. Analysis of torque mounting configuration for nonlinear optics with large aperture[J]. Optics & Laser Technology, 2014, 58(6): 185-193.

[12] 郭骏立, 安源, 李宗轩,等. 空间相机反射镜组件的胶结技术[J]. 红外与激光工程, 2016, 45: 0313002.(Guo Junli, An Yuan, Li Zongxuan, et al. Bonding technique of mirror components in space camera. Infrared and Laser Engineering, 2016, 45: 0313002)

[13] 韦跃峰, 蔺超, 薛浩,等. CO2探测仪反射镜组件设计[J]. 光学 精密工程, 2017, 25(3): 641-647. (Wei Yuefeng, Lin Chao, Xue Hao, et al. Design of mirror subassembly in CO2 sounder. Optics and Precision Engineering, 2017, 25(3): 641-647)

[14] Oberkampf W L, Trucano T G, Hirsch C. Verification, validation, and predictive capability in computational engineering and physics[J]. Applied Mechanics Reviews, 2003, 57(5): 345.

崔鼎, 邓兆祥, 叶长春, 鲜玉强. 考虑结合部特征的150 mm口径反射镜模型修正[J]. 强激光与粒子束, 2019, 31(9): 091001. Cui Ding, Deng Zhaoxiang, Ye Changchun, Xian Yuqiang. Model updating of a 150 mm mirror including joint parts[J]. High Power Laser and Particle Beams, 2019, 31(9): 091001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!