光学 精密工程, 2018, 26 (2): 276, 网络出版: 2018-03-21   

微弱回波条件下差分合成孔径激光雷达成像实验演示

Experimental demonstration of differential synthetic aperture ladar imaging at very low return level
作者单位
1 中国科学院 电子学研究所,北京 100190
2 中国科学院大学,北京 100049
3 北京卫星信息工程研究所 天地一体化信息技术国家重点实验室,北京 100086
摘要
本文针对差分合成孔径激光雷达(DSAL)未来应用场景具有回波信号微弱、平台与目标之间存在运动误差的特点,在微弱回波条件下进行了随机活塞运动目标的DSAL成像演示实验。采用波长为1 550 nm的激光源,搭建了DSAL成像系统,接收孔径间距为188 μm,目标距离为2.4 m。通过在发射端加入偏振片对发射功率进行衰减,并利用步进线性平移台给目标到雷达之间的光程引入随机活塞运动误差。在激光发射功率约为50 nW和20 nW的情况下,对光程变化在[-5 μm, 5 μm]的随机活塞运动目标进行DSAL成像实验,此时合成孔径激光雷达(SAL)图像由于随机相位误差而完全散焦,DSAL图像则聚焦良好。实验结果表明,在微弱回波条件下,DSAL系统仍能较好地消除相位误差,实现稳定成像。
Abstract
Weak echo signal and motion errors are the features of differential synthetic aperture ladar (DSAL) that should be addressed in its future application scenarios. To achieve this, a laboratory DSAL demonstration of random piston motion target at very low return level is reported. Using 1 550 nm laser source, a DSAL imaging setup is built, with receiving apertures spacing of 188 μm and target distance of 2.4 m. The transmitted laser power is attenuated by adding a polarizer to the transmitter and random piston motion errors are introduced into the optical path between the target and the ladar, by using a stepping linear translation platform. At the transmitted power of approximately 20 nW and 50 nW, DSAL imaging experiments are carried out for random piston motion target with optical path variation range of -[5 μm, 5 μm]. Under these experimental conditions, the synthetic aperture ladar (SAL) images are completely defocused due to random phase errors, but the DSAL images are well focused. The results indicate that the DSAL system could eliminate phase errors and achieve stable imaging at very low return levels.
参考文献

[1] BASHKANSKY M, LUCKE R L, FUNK E, et al.. Two-dimensional synthetic aperture imaging in the optical domain[J]. Optics Letters, 2002, 27(22): 1983-1985.

[2] BECK S M, BUCK J R, BUELL W F, et al.. Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing[J]. Applied Optics, 2005, 44(35): 7621-7629.

[3] CROUCH S, BARBER Z W. Laboratory demonstrations of interferometric and spotlight synthetic aperture ladar techniques[J]. Optics Express, 2012, 20(22): 24237-24246.

[4] TURBIDE S, MARCHESE L, TERROUX M, et al.. Synthetic aperture ladar concept for infrastructure monitoring[J]. SPIE, 2014, 9250: 92500B.

[5] KRAUSE B W, BUCK J, RYAN C, et al.. Synthetic aperture ladar flight demonstration[C]. Proceedings of 2011 Conference on Lasers and Electro-Optics (CLEO), IEEE, 2011.

[6] 刘立人, 周煜, 职亚楠, 等. 大口径合成孔径激光成像雷达演示样机及其实验室验证[J]. 光学学报, 2011, 31(9): 0900112.

    LIU L R, ZHOU Y, ZHI Y N, et al.. A large-aperture synthetic aperture imaging ladar demonstrator and its verification in laboratory space[J]. Acta Optica Sinica, 2011, 31(9): 0900112. (in Chinese)

[7] 卢智勇, 周煜, 孙建锋, 等. 机载直视合成孔径激光成像雷达外场及飞行实验[J]. 中国激光, 2017, 44(1): 0110001.

    LU ZH Y, ZHOU Y, SUN J F, et al.. Airborne down-looking synthetic aperture imaging ladar field experiment and its flight testing[J]. Chinese Journal of Lasers, 2017, 44(1): 0110001. (in Chinese)

[8] 吴谨, 李斐斐, 赵志龙, 等. 条带模式合成孔径激光雷达不依赖PGA的高分辨率成像演示[J]. 红外与激光工程, 2014, 43(11): 3559-3564.

    WU J, LI F F, ZHAO ZH L, et al.. Demonstration of stripmap mode synthetic aperture ladar with PGA-independent high resolution images[J]. Infrared and Laser Engineering, 2014, 43(11): 3559-3564. (in Chinese)

[9] 吴曙东, 黄建余, 赵志龙, 等. 聚束模式合成孔径激光雷达实验演示[J]. 光学学报, 2016, 36(6): 0628001.

    WU SH D, HUANG J Y, ZHAO ZH L, et al.. Experimental demonstration of spotlight mode synthetic aperture ladar[J]. Acta Optica Sinica, 2016, 36(6): 0628001. (in Chinese)

[10] ZHAO ZH L, WU J, SU Y Y, et al.. Three-dimensional imaging interferometric synthetic aperture ladar[J]. Chinese Optics Letters, 2014, 12(9): 091101.

[11] 张珂殊, 潘洁, 王然, 等. 大幅宽激光合成孔径雷达成像技术研究[J]. 雷达学报, 2017, 6(1): 1-10.

    ZHANG K SH, PAN J, WANG R, et al.. Study of wide swath synthetic aperture ladar imaging techology[J]. Journal of Radars, 2017, 6(1): 1-10. (in Chinese)

[12] WAHL D E, EICHEL P H, GHIGLIA D C, et al.. Phase gradient autofocus-a robust tool for high resolution SAR phase correction[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 827-835.

[13] STAPPAERTS E A, SCHARLEMANN E T. Differential synthetic aperture ladar[J]. Optics Letters, 2005, 30(18): 2385-2387.

[14] BARBER Z W, DAHL J R. Experimental demonstration of differential synthetic aperture ladar[C]. Proceedings of 2015 Conference on Lasers and Electro-Optics (CLEO), IEEE, 2015.

[15] BARBER Z, DAHL J, BLASZCZYK C R. FMCW differential synthetic aperture ladar for turbulence mitigation[C]. Proceedings of the 18th Coherent Laser Radar Conference (CLRC 2016), CLRC, 2016.

[16] 张鸿翼, 李飞, 徐卫明, 等. 经过改进的差分合成孔径激光雷达对振动的抑制[J]. 红外与毫米波学报, 2015, 34(5): 576-582.

    ZHANG H Y, LI F, XU W M, et al.. Suppression of the vibration effect in the ladar with differential synthetic aperture[J]. Journal of Infrared and Millimeter Waves, 2015, 34(5): 576-582. (in Chinese)

[17] ZHAO ZH L, HUANG J Y, WU SH D, et al.. Experimental demonstration of tri-aperture differential synthetic aperture ladar[J]. Optics Communications, 2017, 389: 181-188.

[18] LUCKE R L. Synthetic aperture ladar simulations with phase screens and Fourier propagation[C]. Proceedings of 2004 IEEE Aerospace Conference, IEEE, 2004, 3: 1798.

赵志龙, 吴谨, 王海涛, 李明磊, 董涛, 国辉, 夏正欢. 微弱回波条件下差分合成孔径激光雷达成像实验演示[J]. 光学 精密工程, 2018, 26(2): 276. ZHAO Zhi-long, WU Jin, WANG Hai-tao, LI Ming-lei, DONG Tao, GUO Hui, XIA Zheng-huan. Experimental demonstration of differential synthetic aperture ladar imaging at very low return level[J]. Optics and Precision Engineering, 2018, 26(2): 276.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!