红外与激光工程, 2019, 48 (3): 0303002, 网络出版: 2019-04-06   

“高分五号”卫星大气主要温室气体监测仪(特邀)

Greenhouse gases Monitoring Instrument(GMI) on GF-5 satellite (invited)
熊伟 1,2
作者单位
1 中国科学院安徽光学精密机械研究所, 安徽 合肥 230031
2 中国科学院通用光学定标与表征技术重点实验, 安徽 合肥 230031
摘要
“高分五号”卫星于2018年5月9日成功发射, 是我国第一颗高光谱观测卫星, 大气主要温室气体监测仪是其中一台有效载荷, 采用空间外差光谱技术进行高光谱分光, 是国际上首台基于该体制的星载温室气体遥感设备。阐述了载荷的基本工作原理, 包括分光原理、工作模式及通道设置等内容。载荷的光学系统主要由五部分组成, 核心单元为一体化胶合干涉仪, 为避免光谱混叠对窄带滤光片的指标参数要求较高。为提高在轨数据定量化水平, 载荷设计了基于漫反射板系统的定标装置, 可满足光谱及辐射定标要求。最后, 梳理了载荷数据处理的基本流程, 并对首批观测数据进行了光谱复原, 成功获取了1级数据产品, 为下一步温室气体反演应用奠定了基础。
Abstract
GF-5 satellite was successfully launched on May 9, 2018. It is the first hyperspectral observation satellite in China. The Greenhouse gas Monitoring Instrument is one of the payloads. It is the first satellite-borne greenhouse gas remote sensing equipment in the world to use spatial heterodyne spectroscopy technology for hyperspectral spectroscopy. The basic working principle of the payload was described, including the principle of light splitting, working mode and band setting. The optical system of the payload consisted of five parts. The core unit was a bonded interferometer. In order to avoid spectral aliasing, the parameters of narrowband filters were required to be high. In order to improve the on-orbit data quantification level, a calibration device based on diffuse reflector system was designed, which can meet the requirements of spectral and radiation calibration. Finally, the basic process of payload data processing was sorted out, and the first batch of observed data was restored by spectrum. The first-level data products are successfully obtained, which lays a foundation for the next application of greenhouse gas inversion.
参考文献

[1] Hamazaki T, Kaneko Y, Kuze A, et al. Fourier transform spectrometer for greenhouse gases observing satellite (GOSAT)[C]//Enabling Sensor & Platform Technologies for Spaceborne Remote Sensing. International Society for Optics and Photonics, 2005.

[2] Frankenberg C, Pollock R, Lee R A M, et al. The orbiting carbon observatory (OCO-2): spectrometer performance evaluation using pre-launch direct sun measurements[J]. Atmospheric Measurement Techniques, 2015, 8(1): 301-313.

[3] O′Brien D M, Rayner P J. Global observations of the carbon budget, 2, CO2 column from differential absorption of reflected sunlight in the 1.61 μm band of CO2 [J]. Journal of Geophysical Research, 2002, 107(D18): 4354.

[4] Harlander J M, Roesler F L, Englert C R, et al. Spatial heterodyne spectroscopy for high spectral resolution space-based remote sensing[J]. Optics & Photonics News, 2004, 15(15): 46-51.

[5] Roesler F L, Harlander J M. Spatial heterodyne spectroscopy for atmospheric remote sensing[C]// Proc SPIE, 1999, 3756: 337-345.

[6] Harlander J M, Roesler F L, Chakrabarti S. Spatial heterodyne spectroscopy: a novel interferometric techni-que for the FUV[C]//SPIE, 1990, 1344: 10.1117/12.23275.

[7] Rodgers C D. Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation [J]. Rev Geophys and Space Phys, 1976, 14(4): 609-624.

[8] Francois-Marie Breon, Philippe Ciais. Spaceborne remote sensing of greenhouse gas concentrations[J]. Comptes Rendus Geoscience, 2009, 342(2010): 412-424.

[9] 罗海燕, 李双, 施海亮, 等. 空间外差光谱仪成像光学系统设计[J]. 红外与激光工程, 2016, 45(8): 228-233.

    Luo Haiyan, Li Shuang, Shi Hailiang, et al. Optical design of imaging system based on spatial heterodyne spectrometer[J]. Infrared and Laser Engineering, 2016, 45(8): 228-233. (in Chinese)

[10] 施海亮, 李志伟, 罗海燕, 等. 超光谱大气CO2监测仪光谱定标误差修正[J]. 光谱学与光谱分析, 2016, 36(7): 2296-2299.

    Shi Hailiang, Li Zhiwei, Luo Haiyan, et al. Error correction of spectral calibration for hyper-spectral atmosphere CO2 monitoring instrument[J]. Spectroscopy and Spectral Analysis, 2016, 36(7): 2296-2299. (in Chinese)

[11] 李志伟, 熊伟, 施海亮, 等. 空间外差光谱仪实验室定标技术研究[J]. 光学学报, 2014, 34(4): 0430002.

    Li Zhiwei, Xiong Wei, Shi Hailiang, et al. Research on laboratory calibration technology of dpace heterodyne dpectrometer[J]. Acta Optica Sinica, 2014, 34(4): 0430002. (in Chinese)

[12] 施海亮, 熊伟, 邹铭敏, 等. 空间外差光谱仪定标方法研究[J]. 光谱学与光谱分析, 2010, 30(6): 1683-1687.

    Shi Hailiang, Xiong Wei, Zou Mingmin, et al. Calibration method of spatial heterodyne spectrometer[J]. Spectroscopy and Spectral Analysis, 2010, 30(6):1683-1687. (in Chinese)

熊伟. “高分五号”卫星大气主要温室气体监测仪(特邀)[J]. 红外与激光工程, 2019, 48(3): 0303002. Xiong Wei. Greenhouse gases Monitoring Instrument(GMI) on GF-5 satellite (invited)[J]. Infrared and Laser Engineering, 2019, 48(3): 0303002.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!