光子学报, 2019, 48 (9): 0912002, 网络出版: 2019-10-12   

基于帕尔贴效应的双波段自适应标定板设计

Design of Dualband Adaptive Calibration Checkerboard Based on Peltier Effect
作者单位
1 陆军工程大学石家庄校区 电子与光学工程系, 石家庄 050003
2 南京军代局驻扬州地区军代室, 江苏 扬州 225009
摘要
为精确标定可见光和红外双波段相机系统, 减少标定板数量并增加对相机响应波段的适应性, 设计了一种基于帕尔贴效应的双波段自适应标定板, 以解决以往大尺寸标定板制造困难的问题.通过控制电路中的电流产生不同强度的红外辐射, 实现对相机系统响应波段的自适应.从双目超大视场长波红外相机拍摄的图像中可以看出, 该标定板标定角点数量多, 能够满足超大视场需求; 标定角点清晰, 对比度高; 红外辐射均匀性、稳定性好.性能测试结果表明, 标定角点重投影误差达到亚像素级别, 标定参数误差均在1%以内, 畸变校正效果好.
Abstract
In order to accurately calibrate the dualband camera system with visible light and infrared lens, reduce the number of calibration plates and increase the adaptability to the camera response band, a dualband adaptive calibration checkerboard based on the Peltier effect is designed, which solves the problem of the difficulty in manufacturing largesize calibration plates. Different intensity infrared radiation is generated by controlling the current in the circuit, achieving the adaptation of the response band of the camera system. It can be seen from the images taken by the binocular ultrawide angle longwave infrared camera that the calibration checkerboard has a large number of points, which can meet the requirements of large field of view. Besides, the calibration corners are clear, the contrast is high, and the infrared radiation uniformity and the stability are good. After the performance test, the calibration corner reprojection error reaches the subpixel level, the calibration parameter error is within 1%, and distortion correction effect is good.
参考文献

[1] KOMASTU S, MARKMAN A, MAHALANOBIS A, et al. Threedimensional integral imaging and object detection using longwave infrared imaging[J]. Applied Optics, 2017, 56(9): D120D126.

[2] LI Weimin, SHAN Siyu, LIU Hui. Highprecision method of binocular camera calibration with a distortion model[J]. Applied Optics, 2017, 56(8), 23682377.

[3] VIALA R, CARLO S, SALMERON S, et al. Calibration of a trinocular system formed with wide angle lens cameras[J]. Optics Express, 2012, 20(25): 2769127696.

[4] CUI Yi, ZHOU Fuqiang, WANG Yexin, et al. Precise calibration of binocular vision system used for vision measurement[J]. Optics Express, 2014, 22(8): 91349149.

[5] SUN Qian, WANG Xiaoyi, XU Jiping, et al. Camera selfcalibration with lens distortion[J]. Optik, 2016, 127(10): 45064513.

[6] 孙军华, 刘震, 张广军, 等. 基于柔性立体靶标的摄像机标定[J].光学学报, 2009, 29(12): 34333439.

    SUN Huajun, LIU Zhen, ZHANG Guangjun, et al. Camera calibration based on flexible 3D target[J]. Acta Optica Sinica, 2009, 29(12): 34333439.

[7] 余明浪, 魏振忠, 孙军华. 基于柔性平面靶标的摄像机现场标定方法[J]. 北京航空航天大学学报, 2009, 35(3): 348350.

    YU Minglang,WEI Zhenzhong, SUN Junhua. Onspot camera calibration method based on flexible planar target[J]. Beihang University, 2009, 35(3): 348350.

[8] 李为民, 俞巧云, 刘超. 采用分离式差分标定标定靶的单摄像机标定方法[J]. 光学学报, 2006, 26(5): 697701.

    LI Weimin, YU Qiaoyun, LIU Chao. Calibration method with separation pattern of a singlecamera based on difference coordinates[J]. Acta Optica Sinica, 2006, 26(5): 697701.

[9] 林武康. 摄像机大视场标定方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2011: 1342.

    LIN Wukang. Research on camera calibration method of wide field[D]. Harbin: Harbin Institute of Technology, 2011: 1342.

[10] SHINKO Y, CHENG, SANGHO P, et al. Multiperspective thermal IR and video arrays for 3D body tracking and driver activity analysis[C]. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005: 23.

[11] NG Y H, DU R. Acquisition of 3D surface temperature distribution of a car body[C]. 2005 IEEE International Conference on Information Acquisition, 2005: 1620.

[12] WU Zhijian, MEADOWS G A. 2D surface reconstruction of water waves[C]. Conference Proceedings on Engineering in the Ocean Environment. 2005: 102107.

[13] SVOBODA T S, MARTINEC D, PAJDAL T S, A convenient multicamera selfcalibration for virtual environments[J]. Teleoperators Virtual Environ. 2005, 14(4): 407422.

[14] JOHNSON M J, BAJCSY P. Integration of thermal and visible imagery for robust foreground detection in teleimmersive spaces[C]. 11th International Conference on Information Fusion, 2008: 18.

[15] VIDAS S, LAKEMON R. A maskbased approach for the geometric calibration of thermalinfrared cameras[J]. IEEE Transaction on Instrumentation and Measurement, 2012, 61(6): 16251635.

[16] PENG En, LI Ling.Camera calibration using onedimensional information and its application in both controlled and uncontrolled environments[J]. Pattern Recognition, 2010, 43(3): 11881198.

[17] JUHO K, SAMI S B. A generic camera model and calibration method for conventional, wideangle, and fisheye lenses[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(8): 13351340.

[18] BOUGUET J Y. Camera calibration toolbox for Matlab [EB/OL][20190505]. http: //www.vision.caltech.edu/bouguetj/calib_doc/.

王子昂, 黄富瑜, 邹昌帆, 刘秉琦, 王元铂. 基于帕尔贴效应的双波段自适应标定板设计[J]. 光子学报, 2019, 48(9): 0912002. WANG Ziang, HUANG Fuyu, ZOU Changfan, LIU Bingqi, WANG Yuanbo. Design of Dualband Adaptive Calibration Checkerboard Based on Peltier Effect[J]. ACTA PHOTONICA SINICA, 2019, 48(9): 0912002.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!