光子学报, 2016, 45 (2): 0217002, 网络出版: 2016-04-01  

单细胞喇曼光谱分析高渗环境对酵母乙醇发酵代谢的影响

Investigation of the Influence of Hyperosmosis on Ethanol Fermentation of Saccharomyces cerevisiae Using Singlecell Raman Spectroscopy
作者单位
1 广西科学院 生物物理实验室,南宁 530007
2 广西大学 行健文理学院,南宁 530004
摘要
应用喇曼光谱和单细胞分析技术监测非发酵底物形成的不同高渗透压对酿酒酵母乙醇发酵的影响,及发酵过程胞内主要生物大分子的变化动态,以期从光谱学角度获知酵母细胞乙醇耐受的分子机制.结果显示,渗透压的升高明显延缓酵母细胞的生长、底物消耗和产物生成,但在2.0 mol/L山梨醇下乙醇的最终产量高于对照组.主成分分析显示,不同渗透压主要影响酵母细胞光谱的1 300~1 306和1 443 cm-1等源自脂类物质的喇曼峰,说明渗透压影响了胞内脂类物质的合成.主特征峰强度的动态变化显示,高渗透压会显著影响782、1 301、1 602和1 657 cm-1峰所表征物质的合成时间和强度,进而影响细胞的代谢方向.结果表明耐高渗菌株能适应高渗环境,调整胞内组分含量,实现高产发酵.
Abstract
To comprehend the resistance mechanism of ethanol of Saccharomyces cerevisiae, Raman spectroscopy and singlecell analysis technique were used to record the Raman spectra of individual yeast cells during ethanol fermentation under different hyperosmosis caused by nonfermentable substrate,monitor the dynamic of major intracellular biomacromolecules. Increasing osmotic pressure significantly delayed the growth of yeast cells, substrate consumption and product formation, but the final ethanol production was not lower than control group even supplemented with 2.0 mol/L of sorbitol. Principal component analysis revealed that hyperosmosis mainly impact the peaks 1 300~1 306, 1 443 cm-1 and other Raman peaks derived from lipids, indicating the hyperosmosis may affect the synthesis of intracellular lipids of yeast. The intensity dynamic of Raman peaks showed that hyperosmosis impacted the synthesis period of macromolecules and the strength of peaks 782,1 301,1 602 and 1 657 cm-1 and then affected the metabolism direction of yeast cell. The results indicate that high permeabilityresistant yeast strains can adapt to hypertonic environment, adjust the content of intracellular components to achieve high yield fermentation.
参考文献

[1] GOLDEMBERG J. Ethanol for a sustainable energy future[J]. Science, 2007, 315(5813): 808810.

[2] SCHUBERT C. Renewable energy: Making fuels for the future[J]. Nature, 2011, 474(7352): 531533.

[3] PEREIRA F B, GUIMARAES P M, TEIXEIRA J A, et al. Selection of Saccharomyces cerevisiae strains for efficient very high gravity bioethanol fermentation processes[J]. Biotechnology Letters, 2010, 32(11): 16551661.

[4] PULIGUNDLA P, SMOGROVICOVA D, OBULAM V S, et al. Very high gravity (VHG) ethanolic brewing and fermentation: a research update[J]. Journal of Industrial Microbiology & Biotechnology, 2011, 38(9): 11331144.

[5] PRADEEP P, REDDY O V. High gravity fermentation of sugarcane molasses to produce ethanol: Effect of nutrients[J]. Indian Journal of Microbiology, 2010, 50(Suppl 1): 8287.

[6] 汤佳鑫, 王继花, 赵长新. 渗透压对酿酒酵母胞内代谢关键酶活性的影响 [J]. 酿酒科技, 2008, 2008(5): 4549.

    TANG Jiaxing, WANG Jihua, ZHAO Changxin. Effect of hyperosmosis on the activities of key metabolic enzymes in Saccharomyces cerevisiae[J]. Liqiuormaking Science & Technology, 2008, 2008(5): 4549.

[7] PRATT P L, BRYCE J H, STEWART G G. The effects of osmotic pressure and ethanol on yeast viability and morphology[J]. Journal of the Institute of Brewing, 2003, 109(3): 218228.

[8] GASCH A P, SPELLMAN P T, KAO C M, et al. Genomic expression programs in the response of yeast cells to environmental changes[J]. Molecular Biology of the Cell, 2000, 11(12): 42414257.

[9] SHIH C J, SMITH E A. Determination of glucose and ethanol after enzymatic hydrolysis and fermentation of biomass using Raman spectroscopy[J]. Analytica Chimica Acta, 2009, 653(2): 200206.

[10] AVILA T C, POPPI R J, LUNARDI I, et al. Raman spectroscopy and chemometrics for online control of glucose fermentation by Saccharomyces cerevisiae[J]. Biotechnology Progress, 2012, 28(6): 15981604.

[11] GRAY S R, PERETTI S W, LAMB H H. Realtime monitoring of highgravity corn mash fermentation using in situ raman spectroscopy[J]. Biotechnology and Bioengineering, 2013, 110(6): 16541662.

[12] UYSAL R S, SOYKUT E A, BOYACI I H, et al. Monitoring multiple components in vinegar fermentation using Raman spectroscopy[J]. Food Chemistry, 2013, 141(4): 43334343.

[13] PENG L, WANG G, LIAO W, et al. Intracellular ethanol accumulation in yeast cells during aerobic fermentation: a Raman spectroscopic exploration[J]. Letters in Applied Microbiology, 2010, 51(6): 632638.

[14] 李自达, 赖钧灼, 廖威, 等. 浓醪乙醇发酵的单细胞喇曼光谱表征 [J]. 光学学报, 2012, 32(3): 0317001.

    LI Zida, LAI Junzhuo, LIAO Wei, et al. Raman spectroscopic profile of ethanol fermentation in high gravity cassava starch brewing[J]. Acta Optica Sinica, 2012, 32(3): 0317001.

[15] 覃赵军, 赖钧灼, 刘斌, 等. 不同初始pH值的乙醇发酵过程喇曼光谱分析 [J]. 中国激光, 2013, 40(2): 0215001.

    QIN Zhaojun, LAI Junzhuo, LIU Bin, et al. Raman Spectroscopic Analysis of Ethanol Fermentation at Various Initial pH Levels[J]. Chinese Journal of Lasers, 2013, 40(2): 0215001.

[16] 王巧贞, 卢明倩, 李冰, 等. 乙醇胁迫酵母凋亡过程的单细胞喇曼光谱[J]. 光子学报, 2014, 43(6): 630005.

    WANG Qiaozhen, LU Mingqian, LI Bing, et al. Apoptosis process under high concentrations of ethanol stress at a single cell level with Raman Spectroscopy[J]. Acta Photonica Sinica, 2014, 43(6): 630005

[17] 覃赵军, 赖钧灼, 彭立新, 等. 喇曼光谱分析有机氮源促进乙醇发酵的机制 [J]. 分析化学, 2014, 42(10): 14711477.

    QIN Zhaojun, LAI Junzhou, PENG Lixin, et al. Raman Spectral profiles of promoting effects of organic nitrogen sources on ethanol fermentation using Saccharomyces cerevisiae[J]. Chinese Journal of Analytic Chemisry, 2014, 42(10): 14711477.

[18] XIE C, DINNO M A, LI Y Q. Nearinfrared Raman spectroscopy of single optically trapped biological cells [J]. Optics Letters, 2002, 27(4): 249251.

[19] 陈秀丽, 刘军贤, 申卫东, 等. 喇曼光镊分析血红细胞的携氧能力 [J]. 光子学报, 2010, 39(5): 907912.

    CHEN Xiuli, LIU Junxian, SHEN Weidong, et al. Probing into the oxygen carrying capacity of red blood cells using Raman tweezers[J]. Acta Photonica Sinica, 2010, 39(5): 907912.

[20] 李自达, 陶站华, 孟令晶, 等. 分选特殊产物微生物的喇曼光谱新方法 [J]. 光子学报, 2011, 40(5): 722727.

    LI Zida, TAO Zhanhua, MENG Lingjing, et al. Sorting economic microorganisms by using optical manipulation and Raman microspectroscopy[J]. Acta Photonica Sinica, 2011, 40(5): 722727.

[21] PUPPELS G J, DE MUL F F, OTTO C, et al. Studying single living cells and chromosomes by confocal Raman microspectroscopy[J]. Nature, 1990, 347(6290): 301303.

[22] NOTINGHER I, VERRIER S, HAQUE S, et al. Spectroscopic study of human lung epithelial cells (A549) in culture: living cells versus dead cells[J]. Biopolymers, 2003, 72(4): 230240.

[23] HUANG Y S, KARASHIMA T, YAMAMOTO M, et al. Molecularlevel investigation of the structure, transformation, and bioactivity of single living fission yeast cells by time and spaceresolved Raman spectroscopy[J]. Biochemistry, 2005, 44(30): 1000910019.

[24] HUANG Y S, NAKATSUKA T, HAMAGUCHI H O. Behaviors of the "Raman spectroscopic signature of life" in single living fission yeast cells under different nutrient, stress, and atmospheric conditions[J]. Applied Spectroscopy, 2007, 61(12): 12901294.

[25] XIE C A, DINNO M A, LI Y Q. Nearinfrared Raman spectroscopy of single optically trapped biological cells[J]. Optics Letters, 2002, 27(4): 249251.

[26] SINGH G P, CREELY C M, VOLPE G, et al. Realtime detection of hyperosmotic stress response in optically trapped single yeast cells using Raman microspectroscopy[J]. Analytical Chemistry, 2005, 77(8): 25642568.

[27] AVETISYAN A, JENSEN J B, HUSER T. Monitoring trehalose uptake and conversion by single bacteria using laser tweezers Raman spectroscopy[J]. Analytical Chemistry, 2013, 85(15): 72647270.

[28] CHIU Y F, HUANG C K, SHIGETO S. In vivo probing of the temperature responses of intracellular biomolecules in yeast cells by labelfree Raman microspectroscopy[J]. Chembiochem : a European Journal of Chemical Biology, 2013, 14(8): 10011005.

[29] CHAN J W. Recent advances in laser tweezers Raman spectroscopy (LTRS) for labelfree analysis of single cells[J]. Journal of Biophotonics, 2013, 6(1): 3648.

覃赵军, 彭立新, 王晓春, 陈真英, 王桂文. 单细胞喇曼光谱分析高渗环境对酵母乙醇发酵代谢的影响[J]. 光子学报, 2016, 45(2): 0217002. QIN Zhaojun, PENG Lixin, WANG Xiaochun, CHEN Zhenying, WANG Guiwen. Investigation of the Influence of Hyperosmosis on Ethanol Fermentation of Saccharomyces cerevisiae Using Singlecell Raman Spectroscopy[J]. ACTA PHOTONICA SINICA, 2016, 45(2): 0217002.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!