强激光与粒子束, 2014, 26 (4): 045007, 网络出版: 2014-04-24   

电磁轨道炮高速滑动接触电阻的定量表征

Quantitative expression of sliding contact resistance between armature and rail in railgun
作者单位
中国工程物理研究院 流体物理研究所, 脉冲功率科学与技术重点实验室, 四川 绵阳 621999
摘要
从描述电磁轨道炮炮口电压波形的场路模型出发,构建了电枢/轨道高速滑动接触电阻与轨道电流波形、炮口电压波形、电枢膛内速度曲线和轨道结构参数之间的关系,依据此关系可定量表征电磁轨道炮高速滑动接触电阻。实例计算表明,电枢/轨道高速滑动接触电阻的变化依赖于轨道电流变化,对应电流上升段、平顶段和电流下降段。在平顶段接触电阻最小约0.2 mΩ,在电流上升段和电流下降段,接触电阻达3 mΩ。
Abstract
Based on the physical model of the electromagnetic railgun, a quantitative expression of sliding contact resistance of electromagnetic railgun is derived. The expression is related to the rail current, muzzle voltage, in-bore velocity of the armature and the rail configuration. The calculated sliding contact resistances between armature and rail depend on rail current. The resistance is different at different region of the rail current. At flat region, the contact resistance is about 0.2 mΩ and at the rising and falling regions, the contact resistance reaches 3 mΩ.
参考文献

[1] Marshall R A, Ying W. Railguns: Their science and technology[M]. Beijing: China Mach Press, 2004.

[2] Bauer D P. Achieving high efficiency with conventional railgun launchers[J]. IEEE Trans on Magn, 1995, 31(1): 263-266.

[3] Barber J P, Bauer D P, Jamison K, et al. A survey of armature transition mechanisms[J]. IEEE Trans on Magn, 2003, 39(1): 47-51.

[4] Haugh D C, Hainsworth M G. Why “C” armatures work (and why they don’t!)[J]. IEEE Trans on Magn, 2003, 39(1): 52-55.

[5] Siaenen T, Schneider M, Zacharias P. Rail gun muzzle velocity control with high accuracy[J]. IEEE Trans on Plasma Science, 2012, 39(12): 133-137.

[6] He Y, Guan Y C, Gao G S, et al. Efficiency analysis of an electromagnetic railgun with a full circuit model[J]. IEEE Trans on Plasma Science, 2011, 38(12): 3425-3428.

[7] Engel T G, Neri J M, Verackav M J. Characterization of the velocity skin effect in the surface layer of a railgun sliding contact[J]. IEEE Trans on Magn, 2008, 44(7): 1837-1844.

[8] Barber J P, Dreizin Y. Model of contact transitioning with realistic armature-rail interface[J]. IEEE Trans on Magn, 1995, 31(1): 96-100.

[9] Parks B. Current melt wave model for transitioning solid armatures[J]. J Appl Phys, 1990, 67(7): 3511-3516.

[10] Stefani F, Parker J V. Experiments to measure wear in aluminum armatures[J]. IEEE Trans on Magn, 1999, 35(1): 100-106.

[11] Hsieh K T. Parallelization of EMAP3D based on element-by-element Jacobi preconditioned conjugate gradient method[J]. IEEE Trans on Magn, 2003, 39(1): 139-147.

[12] Ghassemi M. Effect of liquid film (indium) on thermal and electromagnetic distribution of an electromagnetic launcher with new armature[J]. IEEE Trans on Magn, 2005, 41(1): 408-413.

[13] Schneider M. Experiments with brush armatures- new technical solutions[J]. IEEE Trans on Magn, 2005, 41(1): 231-234.

[14] Schneider M. Doppler-radar, a possibility to monitor projectile dynamics in railguns[J]. IEEE Trans on Magn, 2003, 39(1): 183-187.

[15] Melton D, Stefani F. Noise component in muzzle voltage traces[J]. IEEE Trans on Magn, 2005, 41(1): 214-219.

[16] Dreizin Y A, Barber J P. On the origins of muzzle voltage[J]. IEEE Trans on Magn, 1995, 31(1): 582-586.

[17] 徐伟东,袁伟群,陈允,等.电磁轨道发射器连续发射的滑动电接触[J].强激光与粒子束, 2012, 24(3): 668-672.(Xu Weidong, Yuan Weiqun, Chen Yun, et al. Sliding electrical contact performance of electromagnetic launcher system in rapid fire mode. High Power Laser and Particle Beams, 2012, 24(3): 668-672)

[18] 关永超,计策,卫兵,等.电磁轨道发射装置隔离式分压器[J].强激光与粒子束, 2012, 24(4): 793-796.(Guan Yongchao, Ji Ce, Wei Bing, et al. Isolated voltage divider for electromagnetic rail launcher. High Power Laser and Particle Beams, 2012, 24(4): 793-796)

[19] Wey J, Lehmann P, Peter H. DES 3 MJ-railgun, experimental results at ISL[J]. IEEE Trans on Magn, 1995, 31(1): 371-376.

何勇, 宋盛义, 关永超, 程诚, 高贵山, 李业勋, 仇旭. 电磁轨道炮高速滑动接触电阻的定量表征[J]. 强激光与粒子束, 2014, 26(4): 045007. He Yong, Song Shengyi, Guan Yongchao, Cheng Cheng, Gao Guishan, Li Yexun, Qiu Xu. Quantitative expression of sliding contact resistance between armature and rail in railgun[J]. High Power Laser and Particle Beams, 2014, 26(4): 045007.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!