Photonics Research, 2020, 8 (6): 06000830, Published Online: Apr. 30, 2020  

Dual-layered metasurfaces for asymmetric focusing Download: 748次

Author Affiliations
1 Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
2 Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
3 e-mail: ymzhu@usst.edu.cn
Copy Citation Text

Bingshuang Yao, Xiaofei Zang, Zhen Li, Lin Chen, Jingya Xie, Yiming Zhu, Songlin Zhuang. Dual-layered metasurfaces for asymmetric focusing[J]. Photonics Research, 2020, 8(6): 06000830.

References

[1] S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, E. Ozbay. Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit. Appl. Phys. Lett., 2011, 98: 051103.

[2] D. Dai, Z. Wang, J. E. Bowers. Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler. Opt. Lett., 2011, 36: 2590-2592.

[3] S. Cakmakyapan, A. E. Serebryannikov, H. Caglayan, E. Ozbay. Spoof-plasmon relevant one-way collimation and multiplexing at beaming from a slit in metallic grating. Opt. Express, 2012, 20: 26636-26648.

[4] D. F. Tang, C. Wang, W. K. Pan, M. H. Li, J. F. Dong. Broad dual-band asymmetric transmission of circular polarized waves in near-infrared communication band. Opt. Express, 2017, 25: 11329-11339.

[5] A. Cicek, M. B. Yucel, O. A. Kaya, B. Ulug. Refraction-based photonic crystal diode. Opt. Lett., 2012, 37: 2937-2939.

[6] D. L. Sounas, C. Caloz. Electromagnetic nonreciprocity and gyrotropy of graphene. Appl. Phys. Lett., 2011, 98: 021911.

[7] A. Shaltout, A. Kildishev, V. Shalaev. Time-varying metasurfaces and Lorentz non-reciprocity. Opt. Mater. Express, 2015, 5: 2459-2467.

[8] D. L. Sounas, A. Alu. Non-reciprocal photonics based on time modulation. Nat. Photonics, 2017, 11: 774-783.

[9] A. M. Mahmoud, A. R. Davoyan, N. Engheta. All-passive nonreciprocal metastructure. Nat. Commun., 2015, 6: 8359.

[10] V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, N. I. Zheludev. Asymmetric propagation of electromagnetic waves through a planar chiral structure. Phys. Rev. Lett., 2006, 97: 167401.

[11] C. Huang, Y. Feng, J. Zhao, Z. Wang, T. Jiang. Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures. Phys. Rev. B, 2012, 85: 195131.

[12] Z. Li, M. Gokkavas, E. Ozbay. Manipulation of asymmetric transmission in planar chiral nanostructures by anisotropic loss. Adv. Opt. Mater., 2013, 1: 482-488.

[13] C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, F. Lederer. Asymmetric transmission of linearly polarized light at optical metamaterials. Phys. Rev. Lett., 2010, 104: 253902.

[14] V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, S. L. Prosvirnin. Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures. Nano Lett., 2007, 7: 1996-1999.

[15] M. Stolarek, D. Yavorskiy, R. Kotynski, C. J. Z. Rodriguez, J. Lusakowski, T. Szoplik. Asymmetric transmission of terahertz radiation through a double grating. Opt. Lett., 2013, 38: 839-841.

[16] M. Mutlu, A. E. Akosman, A. E. Serebryannikov, E. Ozbay. Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling. Phys. Rev. Lett., 2012, 108: 213905.

[17] H. Kurt, D. Yilmaz, A. E. Akosman, E. Ozbay. Asymmetric light propagation in chirped photonic crystal waveguides. Opt. Express, 2012, 20: 20635-20646.

[18] X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, T. Zentgraf. Dual-polarity plasmonic metalens for visible light. Nat. Commun., 2012, 3: 1198.

[19] X. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Yue, C. Qiu, S. Zhang. Longitudinal multifocimetalens for circularly polarized light. Adv. Opt. Mater., 2015, 3: 1201-1206.

[20] Z. Zhang, D. Wen, C. Zhang, M. Chen, W. Wang, S. Chen, X. Chen. Multifunctional light sword metasurface lens. ACS Photon., 2018, 5: 1794-1799.

[21] X. Zang, H. Ding, Y. Intaravanne, L. Chen, Y. Peng, Q. Ke, A. V. Balakin, A. P. Shkurinov, X. Chen, Y. Zhu, S. Zhuang. A multi-foci metalens with polarization-rotated focal points. Laser Photon. Rev., 2019, 13: 1900182.

[22] A. Arbabi, Y. Horie, A. J. Ball, A. Faraon. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun., 2015, 6: 7069.

[23] S. Wang, P. Wu, V. Su, Y. Lai, M. Chen, H. Kuo, B. Chen, Y. Chen, T. Huang, J. Wang, R. Lin, C. Kuan, T. Li, Z. Wang, S. Zhu, D. Tsai. A broadband achromatic metalens in the visible. Nat. Nanotechnol., 2018, 13: 227-232.

[24] E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, A. Faraon. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica, 2016, 3: 628-633.

[25] N. Davidson, A. Friesem, E. Hasman. Holographic axilens: high resolution and long focal depth. Opt. Lett., 1991, 16: 523-525.

[26] X. Zang, W. Xu, M. Gu, B. Yao, L. Chen, Y. Peng, J. Xie, A. V. Balakin, A. P. Shkurinov, Y. Zhu, S. Zhuang. Polarization-insensitive metalens with extended focal depth and longitudinal high-tolerance imaging. Adv. Opt. Mater., 2020, 8: 1901342.

[27] N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, F. Capasso. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett., 2012, 12: 6328-6333.

[28] B. Yang, W. M. Ye, X. D. Yuan, Z. H. Zhu, C. Zeng. Design of ultrathin plasmonic quarter-wave plate based on period coupling. Opt. Lett., 2013, 38: 679-681.

[29] R. Fan, Y. Zhou, X. Ren, R. Peng, S. Jiang, D. Xu, X. Xiong, X. Huang, M. Wang. Freely tunable broadband polarization rotator for terahertz waves. Adv. Mater., 2015, 27: 1201-1206.

[30] S. Jiang, X. Xiong, Y. Hu, Y. Hu, G. Ma, R. Peng, C. Sun, M. Wang. Controlling the polarization state of light with a dispersion-free metastructure. Phys. Rev. X., 2014, 4: 021026.

[31] E. Karimi, S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, R. W. Boyd. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light Sci. Appl., 2014, 3: e167.

[32] F. Yue, D. Wen, C. Zhang, B. D. Gerardot, W. Wang, S. Zhang, X. Chen. Multichannel polarization-controllable superpositions of orbital angular momentum states. Adv. Mater., 2017, 29: 1603838.

[33] X. Zang, Y. Zhu, C. Mao, W. Xu, H. Ding, J. Xie, Q. Cheng, L. Chen, Y. Peng, Q. Hu, M. Gu, S. Zhuang. Manipulating terahertz plasmonic vortex based on geometric and dynamic phase. Adv. Opt. Mater., 2018, 7: 1801328.

[34] D. Wen, D. F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, X. Chen. Helicity multiplexed broadband metasurface holograms. Nat. Commun., 2015, 6: 8241.

[35] G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, S. Zhang. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol., 2015, 10: 308-312.

[36] B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, Y. Li. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms. Nano Lett., 2016, 16: 5235-5240.

[37] X. Zang, F. Dong, F. Yue, C. Zhang, L. Xu, Z. Song, M. Chen, P. Chen, G. S. Buller, Y. Zhu, S. Zhuang, W. Chu, S. Zhang, X. Chen. Polarization encoded color image embedded in a dielectric metasurface. Adv. Mater., 2018, 30: 1707499.

[38] L. Jin, Z. Dong, S. Mei, Y. Yu, Z. Wei, Z. Pan, S. Rezaei, X. Li, A. I. Kuznetsov, Y. S. Kivshar, J. K. W. Yang, C. W. Qiu. Noninterleaved metasurface for (26−1) spin- and wavelength-encoded holograms. Nano Lett., 2018, 18: 8016-8024.

[39] Y. W. Huang, W. T. Chen, W. Tsai, P. Wu, C. Wang, G. Sun, D. P. Tsai. Aluminum plasmonic multicolor meta-hologram. Nano. Lett., 2015, 15: 3122-3127.

[40] D. Frese, Q. Wei, Y. Wang, L. Huang, T. Zentgraf. Nonreciprocal asymmetric polarization encryption by layered plasmonicmetasurfaces. Nano. Lett., 2019, 19: 3976-3980.

[41] K. Chen, G. Ding, G. Hu, Z. Jin, J. Zhao, Y. Feng, T. Jiang, A. Alu, C. W. Qiu. Directional Janus metasurface. Adv. Mater., 2019, 32: 1906352.

[42] Q. Sun, Z. Zhang, Y. Huang, X. Ma, M. Pu, Y. Guo, X. Li, X. Luo. Asymmetric transmission and wavefrontmanipulation toward dual-frequency meta-holograms. ACS Photon., 2019, 6: 1541-1546.

[43] X. Zang, C. Miao, X. Guo, G. You, H. Yang, L. Chen, Y. Zhu, S. Zhuang. Polarization-controlled terahertz superfocusing. Appl. Phys. Lett., 2018, 113: 071102.

[44] W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. J. Shi, E. Lee, F. Capasso. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol., 2019, 13: 220-226.

[45] R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, D. P. Tsai. Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol., 2018, 14: 227-231.

[46] W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, F. Capasso. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat. Commun., 2019, 10: 355.

[47] F. Yue, C. Zhang, X. Zang, D. Wei, B. D. Gerardot, S. Zhang, X. Chen. High-resolution grayscale image hidden in a laser beam. Light Sci. Appl., 2018, 7: 17129.

Bingshuang Yao, Xiaofei Zang, Zhen Li, Lin Chen, Jingya Xie, Yiming Zhu, Songlin Zhuang. Dual-layered metasurfaces for asymmetric focusing[J]. Photonics Research, 2020, 8(6): 06000830.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!