光学学报, 2011, 31 (9): 0900104, 网络出版: 2011-08-31   

突破光学衍射极限,发展纳米光学和光子学 下载: 1278次

Breaking Through the Optical Diffraction Limits, Developing the Nano-Optics and Photonics
干福熹 1,2,*王阳 1
作者单位
1 中国科学院上海光学精密机械研究所, 上海 201800
2 复旦大学信息科学与工程学院, 上海 200433
摘要
信息技术已经进入纳米时代,纳米光学和光子学正是为满足快速和高密度信息技术的需求而产生、发展的。先进的纳米光学和光子学器件应该是高速、高分辨率和高集成的,形成各类光学和光子学芯片和盘片。由于器件最小特征尺寸和加工分辨率受限于光的衍射极限,现有技术已接近实用化技术的理论极限并且成本很高,只有突破光学衍射极限才能进一步发展纳米光学和光子学。在光的远场和近场应用超分辨率技术,是当前重要的前沿课题,它们的应用主要集中于信息技术领域,具有代表性的是纳米信息存储和光刻中的光学超分辨率技术等。
Abstract
Information technology has entered into the nanometer scale era. Nano-optics and photonics are generated and developed to meet the demands of fast and high density information technology. Advanced nano-optical and photonic devices should be of high speed, high resolution and high integration, forming various types of optical and photonic chips and disks. Because the minimum feature size and processing resolution of optical devices are limited by the diffraction limit, the existing technologies have been approaching to the theoretical limit and the cost is very high. Only breaking through the diffraction limit can further develop nano-optics and photonics. Achieving super-resolution in the far and near optical fields is one of the important academic topics, and its application is mainly focused on the optical super-resolution technologies for the nano information storage and lithography applications.
参考文献

[1] R. Menon. Towards diffraction-unlimited optical nanopatterning [J]. Optics and Photonics News, 2009, 20(12): 17~18

[2] H. F. Wang, F. X. Gan. New approach to superresolution[J]. Opt. Eng., 2001, 40(5): 851~855

[3] H. F. Wang, L. P. Shi, B. Lukyanchuk et al.. Creation of a needle of longitudinally polarized light in vacuum using binary optics[J]. Nature Photon., 2008, 2(8): 501~505

[4] E. Betzig, J. Trautman, R. Wolfe et al.. Near-field magneto-optics and high density data storage[J]. Appl. Phys. Lett.,1992, 61(2): 142~144

[5] W. L. Barnes, A. Dereux, T. W. Ebbesen. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824~830

[6] G. Bouwhuis, J. H. M. Spruit. Optical storage read-out of nonlinear disks[J]. Appl. Opt., 1990, 29(26): 3766~3768

[7] K. Yasuda, M. Ono, K. Aratani et al.. Premastered optical disk by superresolution[J]. Jpn. J. Appl. Phys., 1993, 32(11B): 5210~5213

[8] J. Tominaga, H. Fuji, A. Sato et al.. The near-field super-resolution properties of an antimony thin film[J]. Jpn. J. Appl. Phys. Part 2, 1998, 37(11A): L1323~L1325

[9] J. T. Fourkas, L. J. Li, R. R. Gattass et al.. Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization[J]. Science, 2009, 324(5929): 910~913

[10] R. R. McLeod, T. F. Scott, B. A. Kowalski et al.. Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography[J]. Science, 2009, 324(5929): 913~917

[11] R. Menon, T. L. Andrew, H. Y. Tsai. Confining light to deep subwavelength dimensions to enable optical nanopatterning[J]. Science, 2009, 324(5929): 917~921

[12] S. W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Opt. Lett., 1994, 19(11): 780~782

[13] G. T. Di Francia. Super-gain antennas and optical resolving power[J]. Il Nuovo Cimento (1943-1954), 1952, 9(3): 426~438

[14] Y. Yamanaka, Y. Hirose, H. Fujii et al.. High-density recording by superresolution in an optical disk memory system[J]. Appl. Opt., 1990, 29(20): 3046~3051

[15] H. F. Wang, F. X. Gan. High focal depth with a pure-phase apodizer[J]. Appl. Opt., 2001, 40(31): 5658~5662

[16] H. F. Wang, F. X. Gan. Phase-shifting apodizers for increasing focal depth[J]. Appl. Opt., 2002, 41(25): 5263~5266

[17] X. M. Gao, Z. Fei, W. D. Xu et al.. Focus splitting induced by a pure phase-shifting apodizer[J]. Opt. Commun., 2004, 239(1-3): 55~59

[18] X. M. Gao, Z. Fei, F. Zhang et al.. Tunable focal depth of an apodized focusing optical system[J]. Opt. Eng., 2005, 44(6): 063001

[19] 周常河, 曹由由, 底彩慧. 采用超分辨位相板的光盘读取头[P].中国专利,CN201035986,2008.3.12

    Zhou Changhe, Cao Youyou, Di Caihui. Optical disk pickup head with superresoluion phase plate [P]. China Patent, CN201035986,2008.3.12

[20] 程侃, 谭峭峰, 周哲海 等. 径向偏振光三维超分辨衍射光学元件设计 [J]. 光学学报, 2010, 30(11): 3295~3299

    Cheng Kan, Tan Qiaofeng, Zhou Zhehai et al.. Design of three-dimensional superresolution diffractive optical elements for radially polarized beam[J]. Acta Optica Sinica, 2010, 30(11): 3295~3299

[21] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi et al.. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 1998, 391(6668): 667~669

[22] J. Tominaga, D. Buechel, T. Nakano et al.. Readout characteristics and mechanism of light-scattering-mode super-RENS disks[C]. SPIE, 2000, 4081: 86~94

[23] X. G. Luo, T. Ishihara. Surface plasmon resonant interference nanolithography technique[J]. Appl. Phys. Lett., 2004, 84(23): 4780~4782

[24] X. Zhang, N. Fang, H. Lee et al.. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721): 534~537

[25] W. Srituravanich, L. Pan, Y. Wang et al.. Flying plasmonic lens in the near field for high-speed nanolithography[J]. Nature Nanotechnology, 2008, 3(12): 733~737

[26] J. S. Wei, F. X. Gan. Dynamic readout of subdiffraction-limited pit arrays with a silver superlens[J]. Appl. Phys. Lett., 2005, 87(21): 211101

[27] K. B. Song, J. Lee, J. H. Kim et al.. Direct observation of self-focusing with subdiffraction limited resolution using near-field scanning optical microscope[J]. Phys. Rev. Lett., 2000, 85(18): 3842~3845

[28] T. Nagase, S. Ashida, K. Ichihara. Super-resolution effect of semiconductor-doped glass[J]. Jpn. J. Appl. Phys. Part 1-Regular Papers Short Notes & Review Papers, 1999, 38(3B): 1665~1668

[29] J. S. Wei, J. Liu. Optical nonlinear absorption characteristics of AgInSbTe phase change thin films[J]. J. Appl. Phys., 2009, 106(8): 083112

[30] J. S. Wei, J. Liu, X. B. Jiao. Subwavelength direct laser writing by strong optical nonlinear absorption and melt-ablation threshold characteristics[J]. Appl. Phys. Lett., 2009, 95(24): 241105

[31] M. Frumar, T. Wagner. Proceedings of the 13th International Symposium on Non-Oxide Glasses and New Optical Glasses: preface[J]. J. Non-Cryst. Solids., 2003, 326-327: vii~viii

[32] 董贤子, 陈卫强, 赵震声 等. 飞秒脉冲激光双光子微纳加工技术及其应用 [J]. 科学通报, 2008, 53(1): 2~13

    Dong Xianzi, Chen Weiqiang, Zhao Zhensheng et al.. Femtosecond laser two-photon micro-/nano-fabrication and its applications [J]. Chinese Science Bulletin, 2008, 53(1): 2~13

[33] S. Kawata, H. B. Sun, T. Tanaka et al.. Finer features for functional microdevices-micromachines can be created with higher resolution using two-photon absorption[J]. Nature, 2001, 412(6848): 697~698

[34] F. X. Zhai, F. Y. Zuo, H. Huang et al.. Optical switch formation in antimony super-resolution mask layers induced by picosecond laser pulses[J]. Chin. Phys. Lett., 2010, 27(1): 014209

[35] J. Tominaga, T. Shima, M. Kuwahara et al.. Ferroelectric catastrophe: beyond nanometre-scale optical resolution[J]. Nanotechnology, 2004, 15(5): 411~415

[36] H. Nagai, A. Yoshikawa, Y. Toyoshima et al.. New application of Se-Ge glasses to silicon microfabrication technology[J]. Appl. Phys. Lett., 1976, 28(3): 145~147

[37] A. Kouchiyama, K. Aratani, Y. Takemotoi et al.. High-resolution blue-laser mastering using an inorganic photoresist[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2003, 42(2B): 769~771

[38] J. S. Wei, A. H. Dun, F. X. Gan. Pattern structures fabricated on ZnS-SiO2/AgOx/ZnS-SiO2 thin film structure by laser direct writing technology[J]. Appl. Phys. A-Mater., 2010, 100(2): 401~407

[39] C. Deng, Y. Geng, Y. Wu. Selective wet etching of Ge2Sb2Te5 phase-change thin films in thermal lithography with tetramethylammonium[J]. Appl. Phys. A, 2011, DOI 10.1007/s00339-011-6377-1

[40] X. Y. Gao, X. S. Gan. Modulation of evanescent focus by localized surface plasmons waveguide[J]. Opt. Express, 2009, 17(25): 22726~22734

干福熹, 王阳. 突破光学衍射极限,发展纳米光学和光子学[J]. 光学学报, 2011, 31(9): 0900104. Gan Fuxi, Wang Yang. Breaking Through the Optical Diffraction Limits, Developing the Nano-Optics and Photonics[J]. Acta Optica Sinica, 2011, 31(9): 0900104.

本文已被 12 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!