光子学报, 2014, 43 (5): 0523001, 网络出版: 2014-06-03   

新型硅薄膜太阳能电池混合陷光结构

New Hybrid Light Trapping Structure in Silicon Thin Film Solar Cells
作者单位
中国科学院半导体研究所 集成技术工程研究中心,北京 100083
摘要
针对应用于薄膜太阳能电池的一种混合陷光结构进行了分析研究,该结构由位于电池正面的电介质颗粒和位于电池背面的金属颗粒构成.运用有限时域差分法模拟分析了正面电介质颗粒与背面金属颗粒对光吸收增强的不同作用范围.运用电场图分析了其对光吸收增强的机制,包括两种颗粒的散射作用和金属纳米颗粒的表面等离子体近场增强作用.分别优化了正面电介质颗粒和背面金属颗粒的材料、大小等参量,获得了一种优化后的混合陷光结构.实验表明带有这种混合陷光结构的电池短路电流密度相对于参考电池提高了30.3%,该方法为提高薄膜太阳能电池效率提供了新思路.
Abstract
In this paper, a kind of hybrid light trapping structures in thin film crystalline silicon solar cells, combined of dielectric nanoparticles on the front and metal nanoparticles on the rear, was reported. Numerical simulations were performed based on the finite-difference time-domain solutions, and the wavelength ranges that the dielectric nanoparticles and metal nanoparticles had impact on, were systematically analyzed. The absorption enhancement mechanisms were shown through the electric filed figures, including the scattering of these two kinds of nanoparticles, and the near field enhancement of surface plasmons excited by the metal nanoparticles. Simulation-based optimizations of the periods and sizes of Ag, TiO2 etc nanoparticles were given. Furthermore, a 30.3% increase in the short circuit current density was obtained in a solar cell with the optimized hybrid light trapping structure. This structure, combined of the different nanoparticles with different locations, is a new way to improve the conversion efficiency of thin film solar cells.
参考文献

[1] GREEN M. Recent developments in photovoltaics[J]. Solar Energy, 2004, 76(1-3): 3-8.

[2] 邱明波,黄因慧,刘志东,等. 硅片绒面形貌影响光线反射的数值研究[J].光学学报,2008,28(12):2394-2399.

    QIU Ming-bo, HUANG Yin-hui, LIU Zhi-dong, et al. Numerical study on effect of silicon texture structure on reflectance of light[J]. Acta Optica Sinica, 2008, 28(12): 2394-2399.

[3] CATCHPOLE K R, POLMAN A. Design principles for plasmon enhanced solar cells[J]. Applied Physics Letters, 2008, 93(19): 191113.

[4] SHI Y P, WANG X D, LIU W, et al. Multilayer silver nanoparticles for light trapping in thin film solar cells[J]. Journal of Applied Physics, 2013, 113(17): 176101-176103.

[5] LIU W, WANG X D, LI Y Q, et al. Surface plasmon enhanced GaAs thin film solar cells[J]. Solar Energy Materials and Solar Cells, 2011, 95(2): 693-698.

[6] 孙晨, 李传皓,石瑞英,等. 金属纳米颗粒对有机太阳能电池光吸收效率影响的研究[J]. 光子学报, 2012, 41(11): 1335-1341.

    SUN Chen, LI Chuan-hao, SHI Rui-ying, et al. A study of influences of metal nanoparticles on absorbing efficiency of organic solar cells[J]. Acta Photonica Sinica, 2012, 41(11): 1335-1341.

[7] DUHRING M B, MORTENSEN N A, SIGMUND O. Plasmonic versus dielectric enhancement in thin-film solar cells[J]. Applied Physics Letters, 2012, 100(21): 211914.

[8] 郭楚才, 叶卫民,袁晓东,等. 亚波长光栅反射特性研究[J]. 光学学报, 2009, 29(12): 3272-3276.

    GUO Chu-cai, YE Wei-min, YUAN Xiao-dong, et al. Research on reflection characteristics of sub-wavelength gratings[J]. Acta Optica Sinica, 2009, 29(12): 3272-3276.

[9] PETERS M, RUDIGER M, HAUSER H, et al. Diffractive gratings for crystalline silicon solar cells-optimum parameters and loss mechanisms[J]. Progress in Photovoltaics: Research and Applications, 2011, 20(7): 862-873.

[10] 王翔,余彦清,褚家如,等. 二维微纳米结构表面反射特性的时域有限差分法模拟研究[J]. 光子学报, 2012, 41(2): 159-165.

    WANG Xiang, YU Yan-qing, CHU Jia-ru. Simulation and research on reflection properties of two- dimension micro/nano structure surface by FDTD method[J]. Acta Photonica Sinica, 2012, 41(2): 159-165.

[11] MENG X, DEPAUW V, GOMARD G, et al. Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells [J]. Optics Express, 2012, 20(S4): A465-A475.

[12] GOMARD G, DROUARD E, LETARTRE X, et al. Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells[J]. Journal of Applied Physics, 2010, 108(12): 123102.

[13] WANG E, WHITE T P, and CATCHPOLE K R. Resonant enhancement of dielectric and metal nanoparticle arrays for light trapping in solar cells[J]. Optics Express, 2012, 20(12): 13226-13237.

[14] 何卓铭,金尚忠,梁培,等. 非晶硅太阳电池结构模拟研究[J]. 光子学报, 2011, 40(2): 204-208.

    HE Zhuo-ming, JIN Shang-zhong, LIANG Pei, et al. Structural simulations of amorphous silicon solar cells[J]. Acta Photonica Sinica, 2011, 40(2): 204-208.

[15] 王春雷,王超,毛艳丽. 衬底温度对磁控溅射法制备的Ag/AZO绒面背反电极性能的影响[J]. 光子学报, 2013, 42(7): 812-816.

    WANG Chun-lei, WANG Chao, MAO Yan-li. Effect of substrate temperature on the properties of textured Ag/AZO back electrodes prepared by magnetron sputtering[J]. Acta Photonica Sinica, 2013, 42(7): 812-816.

[16] MENG X Q, EMMANUEL D, GUILLAUME G, et al. Combined front and back diffraction gratings for broad band light trapping in thin film solar cell[J]. Optics Express, 2012, 20(S5): A560-A571.

[17] XU R, WANG X D, SONG L, et al. Influence of the light trapping induced by surface plasmons and antireflection film in crystalline silicon solar cells[J]. Optics Express, 2012, 20(5): 5061-5068.

[18] LAGOS N, SIGALAS M M, LIDORIKIS E. Theory of plasmonic near-field enhanced absorption in solar cells[J]. Applied Physics Letters, 2011, 99(6): 063304.

[19] BATTAGLIA C, HSU C M, SODERSTROM K, et al. Light trapping in solar cells: can periodic beat random [J]. Acs Nano, 2012, 6(3): 2790-2797.

[20] YU Z F, RAMAN A, FAN S H. Fundamental limit of nanophotonic light trapping in solar cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(41): 17491-17496.

时彦朋, 王晓东, 刘雯, 杨添舒, 杨富华. 新型硅薄膜太阳能电池混合陷光结构[J]. 光子学报, 2014, 43(5): 0523001. SHI Yan-peng, WANG Xiao-dong, LIU Wen, YANG Tian-shu, YANG Fu-hua. New Hybrid Light Trapping Structure in Silicon Thin Film Solar Cells[J]. ACTA PHOTONICA SINICA, 2014, 43(5): 0523001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!