光学 精密工程, 2018, 26 (4): 884, 网络出版: 2018-08-28  

局部加强体对预压双稳态结构跳转力学特征的影响分析

Influences of local reinforcements on the snap-through characteristics of pre-compressed bistable structures
作者单位
大连理工大学 工业装备结构分析国家重点实验室,辽宁 大连 116024
摘要
基于轴向挤压后屈曲模态的双稳态结构, 其跳转力、保持力和跳转行程等双稳态特征与预应力分布和后屈曲模态密切相关, 使得难以通过仅调整预压缩量来实现特定双稳态指标的设计。本文提出引入局部加强体调控预压双稳态梁临界屈曲载荷、应力分布及跳转特征的方法, 建立了具有对称局部加强体的预压双稳态梁跳转分析模型, 分析了预应力、加强体尺寸参数和位置对屈曲临界载荷、跳转力和行程的影响规律。结果表明: 局部加强体不影响原结构跳转力和保持力相等的特征; 与尺寸参数相比加强体位置参数对跳转力有较大影响, 随着位置的变化, 跳转力存在由大变小再变大的变化过程, 且调控同行程双稳态梁跳转力的幅度可达17.04%; 跳转行程主要依赖于局部加强体的刚度和所承受的预应力。
Abstract
参考文献

[1] GO J S, CHO Y H, KWAK B M, et al.. Snapping microswitches with adjustable acceleration threshold[J]. Sensors and Actuators A: Physical, 1996, 54(1-3): 579-583.

[2] WANG D A, PHAM H T, HSIEH Y H. Dynamical switching of an electromagnetically driven compliant bistable mechanism[J]. Sensors and Actuators A: Physical, 2009, 149(1): 143-151.

[3] KIM H, JANG Y H, KIM Y K, et al.. MEMS acceleration switch with bi-directionally tunable threshold[J]. Sensors and Actuators A: Physical, 2014, 208: 120-129.

[4] FU SH, DING G F, WANG H, et al.. Design and fabrication of a magnetic bi-stable electromagnetic MEMS relay[J]. Microelectronics Journal, 2007, 38(4-5): 556-563.

[5] STAAB M, SCHLAAK H F. Novel electrothermally actuated magnetostatic bistable microrelay for telecommunication applications[C]. Proceedings of the 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems, IEEE, 2011: 1261-1264.

[6] QIU J, LANG J H, SLOCUM A H, et al.. A bulk-micromachined bistable relay with U-shaped thermal actuators[J]. Journal of Microelectromechanical Systems, 2005, 14(5): 1099-1109.

[7] ENIKOV E T, KEDAR S S, LAZAROV K V. Analytical model for analysis and design of V-shaped thermal microactuators[J]. Journal of Microelectromechanical Systems, 2005, 14(4): 788-798.

[8] GERSON Y, KRYLOV S, ILIC B, et al.. Design considerations of a large-displacement multistable micro actuator with serially connected bistable elements[J]. Finite Elements in Analysis and Design, 2012, 49(1): 58-69.

[9] GERSON Y, KRYLOV S, ILIC B. Electrothermal bistability tuning in a large displacement micro actuator[J]. Journal of Micromechanics and Microengineering, 2010, 20(11): 112001.

[10] CHIACCHIARI S, ROMEO F, MCFARLAND D M, et al.. Vibration energy harvesting from impulsive excitations via a bistable nonlinear attachment[J]. International Journal of Non-Linear Mechanics, 2017, 94: 84-97.

[11] AND B, BAGLIO S, BULSARA A R, et al.. Investigation of a nonlinear energy harvester[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(5): 1067-1075.

[12] ZOU H X, ZHANG W M, LI W B, et al.. A broadband compressive-mode vibration energy harvester enhanced by magnetic force intervention approach[J]. Applied Physics Letters, 2017, 110(16): 163904.

[13] WU Y B, DING G F, ZHANG C CH, et al.. Design and implementation of a bistable microcantilever actuator for magnetostatic latching relay[J]. Microelectronics Journal, 2010, 41(6): 325-330.

[14] LUHARUKA R, HESKETH P J. A bistable electromagnetically actuated rotary gate microvalve[J]. Journal of Micromechanics and Microengineering, 2008, 18(3): 035015.

[15] QIU J, LANG J H, SLOCUM A H. A curved-beam bistable mechanism[J]. Journal of Microelectromechanical Systems, 2004, 13(2): 137-146.

[16] HUANG H W, LEE F W, YANG Y J J. Design criteria for a push-on push-off MEMS bistable device[J]. Journal of Microelectromechanical Systems, 2016, 25(5): 900-908.

[17] PHAM H T, WANG D A. A constant-force bistable mechanism for force regulation and overload protection[J]. Mechanism and Machine Theory, 2011, 46(7): 899-909.

[18] VANGBO M. An analytical analysis of a compressed bistable buckled beam[J]. Sensors and Actuators A: Physical, 1998, 69(3): 212-216.

[19] VANGBO M, BCKLUND Y. A lateral symmetrically bistable buckled beam[J]. Journal of Micromechanics and Microengineering, 1998, 8(1): 29-32.

[20] 赵剑, 贾建援, 王洪喜, 等. 双稳态屈曲梁的非线性跳跃特性研究[J]. 西安电子科技大学学报(自然科学版), 2007, 34(3): 458-462.

    ZHAO J, JIA J Y, WANG H X, et al.. Nonlinear snap-through characteristic of a compressed bi-stable buckled beam[J]. Journal of Xidian University, 2007, 34(3): 458-462. (in Chinese)

[21] SAIF M T A, MACDONALD N C. A millinewton microloading device[J]. Sensors and Actuators A: Physical, 1996, 52(1-3): 65-75.

[22] FANG W, WICKERT J A. Post buckling of micromachined beams[J]. Journal of Micromechanics and Microengineering, 1994, 4(3): 116-122.

[23] CAZOTTES P, FERNANDES A, POUGET J, et al.. Bistable buckled beam: modeling of actuating force and experimental validations[J]. Journal of Mechanical Design, 2009, 131(10): 101001.

[24] HUANG Y, ZHAO J, LIU SH T. Design optimization of segment-reinforced bistable mechanisms exhibiting adjustable snapping behavior[J]. Sensors and Actuators A: Physical, 2016, 252: 7-15.

[25] 王勖成. 有限单元法[M]. 北京: 清华大学出版社, 2011.

    WANG X CH. Finite Element Method[M]. Beijing: Tsinghua University Press, 2011. (in Chinese)

高仁璟, 李明丽, 王奇, 赵剑, 刘书田. 局部加强体对预压双稳态结构跳转力学特征的影响分析[J]. 光学 精密工程, 2018, 26(4): 884. GAO Ren-jing, LI Ming-li, WANG Qi, ZHAO Jian, LIU Shu-tian. Influences of local reinforcements on the snap-through characteristics of pre-compressed bistable structures[J]. Optics and Precision Engineering, 2018, 26(4): 884.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!