中国激光, 2020, 47 (3): 0301001, 网络出版: 2020-03-12  

外腔泵浦反斯托克斯激光器的耦合波理论 下载: 775次

Coupled Wave Theory of Extra-Cavity Pumped Anti-Stokes Lasers
作者单位
1 天津理工大学理学院, 天津 300384
2 中国电子科技集团公司第十八研究所, 天津 300384
引用该论文

王聪, 吕冬翔. 外腔泵浦反斯托克斯激光器的耦合波理论[J]. 中国激光, 2020, 47(3): 0301001.

Wang Cong, Lü Dongxiang. Coupled Wave Theory of Extra-Cavity Pumped Anti-Stokes Lasers[J]. Chinese Journal of Lasers, 2020, 47(3): 0301001.

参考文献

[1] Piper J A, Pask H M. Crystalline Raman lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 692-704.

[2] Jiang P B, Ding X, Li B, et al. 9.80-W and 0.54-mJ actively Q-switched Nd∶YAG/Nd∶YVO4 hybrid gain intracavity Raman laser at 1176 nm[J]. Optics Express, 2017, 25(4): 3387-3393.

[3] 贾海旭, 丁双红, 刘佳佳, 等. LD抽运Cr 4+∶YAG被动调Q内腔式PbWO4锁模拉曼激光器实验研究[J]. 中国激光, 2014, 41(10): 1002007.

    Jia H X, Ding S H, Liu J J, et al. Laser-diode-pumped Cr 4+∶YAG passively Q-switched intracavity PbWO4 mode-locked Raman laser[J]. Chinese Journal of Lasers, 2014, 41(10): 1002007.

[4] Jiang W, Li Z, Zhu S Q, et al. YVO4 Raman laser pumped by a passively Q-switched Yb∶YAG laser[J]. Optics Express, 2017, 25(13): 14033-14042.

[5] Ding S H, Zhang X Y, Wang Q P, et al. Numerical optimization of the extracavity Raman laser with barium nitrate crystal[J]. Optics Communications, 2006, 267(2): 480-486.

[6] Smetanin S N, Doroshenko M E, Ivleva L I, et al. Low-threshold parametric Raman generation of high-order Raman components in crystals[J]. Applied Physics B, 2014, 117(1): 225-234.

[7] Carman R L, Shimizu F, Wang C S, et al. Theory of Stokes pulse shapes in transient stimulated Raman scattering[J]. Physical Review A, 1970, 2(1): 60-72.

[8] 郑世凯, 杨康文, 敖建鹏, 等. 光纤式相干拉曼散射成像光源研究进展[J]. 中国激光, 2019, 46(5): 0508008.

    Zheng S K, Yang K W, Ao J P, et al. Advances in fiber laser sources for coherent Raman scattering microscopy[J]. Chinese Journal of Lasers, 2019, 46(5): 0508008.

[9] Yang K W, Ye P B, Zheng S K, et al. Polarization switch of four-wave mixing in a tunable fiber optical parametric oscillator[J]. Optics Express, 2018, 26(3): 2995-3003.

[10] 白如雪, 林海枫, 张莉珍, 等. 主动调Q内腔式Nd∶YAG/m-LaVO4拉曼激光器[J]. 中国激光, 2018, 45(9): 0901003.

    Bai R X, Lin H F, Zhang L Z, et al. Actively Q-switched intracavity Nd∶YAG/m-LaVO4 Raman laser[J]. Chinese Journal of Lasers, 2018, 45(9): 0901003.

[11] Wang C, Cong Z H, Qin Z G, et al. LD-side-pumped Nd∶YAG/BaWO4 intracavity Raman laser for anti-Stokes generation[J]. Optics Communications, 2014, 322: 44-47.

[12] Grasiuk A Z, Kurbasov S V, Losev L L. Picosecond parametric Raman laser based on KGd(WO4)2 crystal[J]. Optics Communications, 2004, 240(4/5/6): 239-244.

[13] Wei W, Zhang X Y, Wang Q P, et al. Theoretical and experimental study on intracavity pumped SrWO4 anti-Stokes Raman laser[J]. Applied Physics B, 2014, 116(3): 561-568.

[14] 王聪, 张行愚, 王青圃, 等. 外腔抽运SrWO4反斯托克斯拉曼激光器[J]. 中国激光, 2014, 41(3): 0302008.

    Wang C, Zhang X Y, Wang Q P, et al. Extracavity pumped SrWO4 anti-Stokes Raman lasers[J]. Chinese Journal of Lasers, 2014, 41(3): 0302008.

[15] Wang C, Zhang X Y, Wang Q P, et al. Extracavity pumped BaWO4 anti-Stokes Raman laser[J]. Optics Express, 2013, 21(22): 26014-26026.

[16] Mildren R P, Coutts D W, Spence D J. All-solid-state parametric Raman anti-Stokes laser at 508 nm[J]. Optics Express, 2009, 17(2): 810-818.

[17] Smetanin S N, Jelínek M, Kubecek V. Parametric Raman crystalline anti-Stokes laser at 503 nm with collinear beam interaction at tangential phase matching[J]. Applied Physics B, 2017, 123(7): 203.

[18] Vermeulen N, Debaes C, Fotiadi A A, et al. Stokes-anti-Stokes iterative resonator method for modeling Raman lasers[J]. IEEE Journal of Quantum Electronics, 2006, 42(11): 1144-1156.

[19] Smetanin S N, Jelínek M, Tereshchenko D P, et al. Extracavity pumped parametric Raman nanosecond crystalline anti-Stokes laser at 954 nm with collinear orthogonally polarized beam interaction at tangential phase matching[J]. Optics Express, 2018, 26(18): 22637-22649.

[20] Shen Y R, Bloembergen N. Theory of stimulated Brillouin and Raman scattering[J]. Physical Review, 1965, 137(6A): A1787-A1805.

[21] Makarov N S, Bespalov V G. Effective method of anti-Stokes generation by quasi-phase-matched stimulated Raman scattering[J]. Journal of the Optical Society of America B, 2005, 22(4): 835-843.

[22] Wang C S. Theory of stimulated Raman scattering[J]. Physical Review, 1969, 182(2): 482-494.

[23] Maier M, Kaiser W, Giordmaine J A. Backward stimulated Raman scattering[J]. Physical Review, 1969, 177(2): 580-599.

[24] 王聪, 王喆. 内腔式反斯托克斯激光器的归一化理论解析[J]. 中国激光, 2018, 45(1): 0101009.

    Wang C, Wang Z. Normalized theoretical analysis of intracavity anti-Stokes lasers[J]. Chinese Journal of Lasers, 2018, 45(1): 0101009.

王聪, 吕冬翔. 外腔泵浦反斯托克斯激光器的耦合波理论[J]. 中国激光, 2020, 47(3): 0301001. Wang Cong, Lü Dongxiang. Coupled Wave Theory of Extra-Cavity Pumped Anti-Stokes Lasers[J]. Chinese Journal of Lasers, 2020, 47(3): 0301001.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!