光子学报, 2016, 45 (2): 0223003, 网络出版: 2016-04-01   

一维和双层二维光子晶体太阳能电池背反射器

Back Reflector of Solar Cells Consisting of Onedimensional Photonic Crystal and Doublelayered Twodimensional Photonic Crystal
作者单位
1 桂林电子科技大学 电子工程与自动化学院 广西高校光电信息处理重点实验室,广西 桂林 541004
2 广西科技大学,广西 柳州 545006
摘要
利用aSi∶H和SiO2等介质,设计了一种由一维光子晶体和双层二维光子晶体组成的非晶硅薄膜太阳能电池背反射器.利用时域有限差分法对该背反射器在入射光波长范围为300~1 100 nm波段的反射率和透射率进行仿真,计算不同结构参量下非晶硅太阳能电池短路电流密度并进行比较分析,最终得到了最佳背反射器结构.结果表明:设计的太阳能电池背反射器能够有效地延长入射光在太阳能电池吸收层的传播路径,有助于缓解太阳能电池吸收层厚度对电池吸收效率的影响,提高了电池吸收层对入射光的吸收效率.一维光子晶体和双层二维光子晶体结构的背反射器可以大幅度提高电池的光捕获能力,将非晶硅薄膜太阳能电池的短路电流密度提高到31.96 mA/cm2,较常用的Ag/ZnO背反射器结构非晶硅薄膜太阳能电池提高了51.0%.
Abstract
A highly efficient back reflector of amorphous silicon thinfilm solar cells, which is consisting of onedimensional photonic crystal and doublelayered twodimensional photonic crystal was designed by medium aSi∶H and SiO2. The structure parameters of the back reflector were optimized by calculating its reflectivity and transmissivity at the range of 300~1 100 nm by the finite difference time domain method. The optimal structure was obtained by the calculation and comparison of the short circuit current density in different structural parameters.The results show that the propagation path of photon in the cells can be extended and it can help to reduce the influence of the absorption layer′s thickness on the efficiency of the cells, and improve the absorption efficiency of the battery. So the highly efficient back reflector can greatly enhance the capacity of light harvesting and improve the short circuit current density to 31.96 mA/cm2, which is increased by 51.0% comparing with the solar cell with metallic back reflector of Ag/ZnO that is widely used now.
参考文献

[1] FAHR S, ROCKSTUHL C, LEDERER F. Sandwiching intermediate reflectors in tandem solar cells for improved photon management[J]. Applied Physics Letters, 2012, 101(13): 133904.

[2] KUZMAFILIPEK I J, DUERINCKX F, KERSCHAVER E V, et al. Chirped porous silicon reflectors for thinfilm epitaxial silicon solar cells[J]. Journal of Applied Physics, 2008, 104(7): 073529.

[3] PARK Y, DROUARD E, DAIF O E, et al. Absorption enhancement using photonic crystals for silicon thin film solar cells[J]. Optics Express, 2009, 17(16): 1431214321.

[4] ZENG L, BERMEL P, YI Y, et al. Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector[J]. Applied Physics Letters, 2008, 93(22): 221105.

[5] CURTIN B, BISWAS R , DALAL V. Photonic crystal based back reflectors for light management and enhanced absorption in amorphous silicon solar cells[J].Applied Physics Letters, 2009, 95(23): 231102.

[6] ZENG L, YI Y, HONG C, et al. Efficiency enhancement in Si solar cells by textured photonic crystal back reflector[J]. Applied Physics Letters, 2006, 89(11):111111.

[7] KRC J, ZEMAN M, LUXEMBOURG S L, et al. Modulated photoniccrystal structures as broadband back reflectors in thinfilm solar cells[J]. Applied Physics Letters, 2009, 94(15): 153501.

[8] SAINJU D,VAN DEN OEVER P J,PODRAZA N J,et al.Origin of optical losses in Ag/ZnO backreflectors for thin film Si photovo ltaics[C].IEEE, 2006: 17321735.

[9] DAHAL L R, SAINJU D, LI J, et al. Comparison of Al/ZnO and Ag/ZnO interfaces of backreflectors for thin film Si∶H photovo ltaics[C].IEEE, 2009: 001702001707.

[10] CHO J S, BAEK S, LEE J C, et al. Optimization of ZnO/Ag back reflectors for silicon thin film solar cell application[C]. IEEE, 2010: 001479001482.

[11] 陈培专,侯国付,索松,等. 硅基薄膜太阳电池一维光子晶体背反射器的模拟设计与制备[J].物理学报,2014,63(12):128801.

    CHEN Peizhuan, HOU Guofu, SUO Song, et al. Simulation, design and fabrication of onedimensional photonic crystal back reflector for silicon thin film solar cell[J]. Acta Physica Sinica, 2014, 63(12): 128801.

[12] ZHOU D, BISWAS R. Photonic crystal enhanced lighttrapping in thin film solar cells[J]. Journal of Applied Physics, 2008, 103(9): 093102.

[13] CHOI C G, HAN Y T, KIM J T. Polymer photonic crystal nanosystems fabricated by nanoimprint lithography[C]. IEEE, 2006:48934896.

[14] 章海锋,马力,刘少斌. 非磁化等离子体光子晶体的禁带周期特性研究[J]. 光子学报, 2008, 37(08):15661570.

    ZHANG Haifeng, MA Li, LIU Shaobin. Periodic band gap structure for unmagnetized photonic crystals[J].Acta Photonica Sinica, 2008, 37(08):15661570.

[15] 骆岩红, 赵寰宇,李公平, 基于晶格效应的光子晶体带隙特性研究. 光子学报, 2014,43(12): 1231001.

    LUO Yanhong, ZHAO Huanyu, LI Gongping. Investigation of photonic band gaps of twodimensional photonic crystals based on lattice configuration[J]. Acta Photonica Sinica, 2014, 43(12): 1231001.

[16] LE K Q, JOHN S. Synergistic plasmonic and photonic crystal lighttrapping: Architectures for optical upconversion in thinfilm solar cells[J]. Optics Express, 2014, 22(101): A1A12.

[17] DEPAUM V, MENG X Q, DAIF O E, et al. Micrometrethin crystallinesilicon solar cells integrating numerically optimized 2d photonic crystals[J]. IEEE Journal of Photovoltaics, 2014, 4(1):215223.

[18] BISWAS R, DING C G, PUSCASU I, et al. Theory of sub wavelength hole arrays coupled with photonic crystals for extraordinary thermal emission[J]. Physical Review B, 2006, 74(4): 045107.

[19] CHUTINAN A, KHERANI N P, ZUKOTYNSKI S. High efficiency photonic crystal solar cell architecture[J]. Optics Express, 2009, 17(11): 88718878.

武振华, 李思敏, 张文涛, 高凤艳. 一维和双层二维光子晶体太阳能电池背反射器[J]. 光子学报, 2016, 45(2): 0223003. WU Zhenhua, LI Simin, ZHANG Wentao, GAO Fengyan. Back Reflector of Solar Cells Consisting of Onedimensional Photonic Crystal and Doublelayered Twodimensional Photonic Crystal[J]. ACTA PHOTONICA SINICA, 2016, 45(2): 0223003.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!