光子学报, 2019, 48 (5): 0526001, 网络出版: 2019-06-12  

基于二相滤波的可重构光学物理不可克隆函数设计

Design of Two-phase Filtering Reconfigurable Optical Physical Unclonable Function
作者单位
1 宁波大学 信息科学与工程学院, 浙江 宁波 315211
2 复旦大学 微电子学院, 上海 201203
3 温州大学 数理与电子信息工程学院, 浙江 温州 325035
摘要
通过研究光学散斑提出一种二相滤波的可重构光学物理不可克隆函数设计方案.首先利用微粒空间布朗运动引起的随机偏差, 结合光干涉和衍射机理, 实现随机、不可克隆的光学散斑; 然后, 采用模式选择和二相滤波的方法, 实现物理不可克隆函数数据可重构并降低系统误差; 最后, 通过电荷耦合器件系统采集光学散斑图像, 进行二值化和冯诺依曼处理, 实现随机性高、鲁棒性强和可重构的物理不可克隆函数输出.制备了10组光学物理不可克隆函数样品并进行测试, 每组样品可产生512位二进制数据.实验结果表明所设计的光学物理不可克隆函数输出数据通过美国国家标准技术研究测试, 不同工作模式下随机性达99%, 二相滤波后系统误差降低3%.
Abstract
A two-phase filtering reconfigurable optical physical unclonable function is proposed using the optical speckle. Firstly, the random and unclonable optical speckles are produced by random deviation of the spatial Brownian motion, optical interference and diffraction. Then, the mode selection and two-phase filtering methods are used to realize the reconfigurable function and reduce systematic error. Finally, the optical speckle image is acquired with the help of charge-coupled device system. After binarization and von Neumann processing, the binary data of the physical unclonable function is got with characteristics of randomness, robustness, and reconfigurable. 10 sample optical physical unclonable functions, which each sample can produce 512-bit binary data, are fabricated and tested. The experimental results show that the proposed physical unclonable function passes all National Institute of Standards and Technology randomness tests, the randomness of the physical unclonable function output is 99%, and the two-phase filter method reduces the system error about 3%.
参考文献

[1] PAPPU R, RECHT B, TAYLOR J,et al.Physical one-way functions[J]. Science,2002,297(5589): 2026-2030.

[2] ROSTAMI M, MAJZOOBI M, KOUSHANFAR F,et al.Robust and reverse-engineering resilient PUF authentication and key-exchange by substring matching[J]. IEEE Transactions on Emerging Topics in Computing, 2014,2(1): 37-49.

[3] LIN L, SRIVATHSA S, KRISHNAPPA D K,et al. Design and validation of arbiter-based PUFs for sub-45-nm low-power security applications[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(4): 1394-1403.

[4] ZHANG Yue-jun,WANG Peng-jun, ZHANG Xue-long,et al. A PUFs-based hardware authentication BLAKE algorithm in 65nm CMOS[J]. International Journal of Electronics, 2016, 103(6): 1056-1066.

[5] WANG Peng-jun, ZHANG Yue-jun, HAN Jun,et al.Architecture and physical implementation of reconfigurable multi-Port physical unclonable functions in 65nm CMOS[J].IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2013, E96-A(5): 963-970.

[6] MAITI A, INYOUNG K, SCHAUMONT P.A robust physicalunclonable function with enhanced challenge-response set[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(1): 333-345.

[7] 李婧, 吕晓东, 马毛粉, 等. 基于频谱融合技术的光学衍射成像彩色图像加密系统[J]. 光子学报, 2015, 44(7): 0710002.

    LI Jing, LU Xiao-dong, MA Mao-fen, et al.Optical color image encryption in diffraction imaging scheme based on spectrum fusion[J]. Acta Photonica Sinica, 2015, 44 (7): 0710002.

[8] 刘禹佳, 徐熙平, 徐嘉鸿, 等. 基于矢量运算和副像相位掩模的遥感图像加密技术[J]. 光子学报, 2019, 48(2): 0210002.

    LIU Yu-jia, XU Xi-ping, XU Jia-hong,et al. Remote sensing image encryption using vector operations and secondary image phase masks[J]. Acta Photonica Sinica,2019,48(2): 0210002.

[9] ARPPE R, SRENSEN T J. Physical unclonable functions generated through chemical methods for anti-counterfeiting[J]. Nature Reviews Chemistry, 2017, 1(4): 1-13.

[10] HU Z Y, JOSE MM, COMERAS L, et al.Physically unclonable cryptographic primitives using self-assembled carbon nanotubes[J].Nature Nanotechnology, 2016, 11(6): 559-565.

[11] ROBERTS J, BAGCI I E, ZAWAWI M A M,et al.Using quantum confinement to uniquely identify devices [J]. Scientific Reports, 2015, 5: 1-8.

[12] ZHANG J, LIN Y, LYU Y,et al.A PUF-FSM binding scheme for FPGA IP protection and pay-per-device licensing [J].IEEE Transactions on Information Forensics and Security, 2015, 10(6): 1137-1150.

[13] YEH C H, SUNG P Y, KUO C H,et al.Robust laser speckle recognition system for authenticity identification[J].Optics Express, 2012, 20(22): 24382-24393.

[14] HORSTMEYER R, JUDKEWITZ B, VELLEKOOP I M,et al.Physical key-protected one-time pad [J]. Scientific Reports, 2013, 3: 1-6.

[15] NAKAYAMA K, OHTSUBO J. Optical security device providing fingerprint and designed pattern indicator using fingerprint texture in liquid crystal [J].Optical Engineering, 2012, 51(4): 040506.

[16] BUCHANAN J D, COWBURN R P, JAUSOVEC A V, et al.Fingerprinting’documents and packaging[J]. Nature, 2005, 436(7050): 475.

[17] NIKOLOPOULOS G M, DIAMANTI E. Continuous-variable quantum authentication of physical unclonable keys [J]. Scientific Reports, 2017,7: 1-13.

陈鑫辉, 张跃军, 陈俊烨, 莫立锋, 蔡沛志, 郑俊, 胡鑫, 汪鹏君. 基于二相滤波的可重构光学物理不可克隆函数设计[J]. 光子学报, 2019, 48(5): 0526001. CHEN Xin-hui, ZHANG Yue-jun, CHEN Jun-ye, MO Li-feng, CAI Pei-zhi, ZHENG Jun, HU Xin, WANG Peng-jun. Design of Two-phase Filtering Reconfigurable Optical Physical Unclonable Function[J]. ACTA PHOTONICA SINICA, 2019, 48(5): 0526001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!