光谱学与光谱分析, 2010, 30 (12): 3384, 网络出版: 2011-01-26  

基于粗糙集核优化的支持向量机在多组分污染气体定量分析中的研究与应用

Research on Concentration of Multi-Component Pollution Gas Based on SVM with Kernel Optimized by Rough Set
作者单位
1 中北大学电子测试技术国家重点实验室, 山西 太原030051
2 中北大学山西省光电信息与仪器工程技术研究中心, 山西 太原030051
摘要
研究基于粗糙集核优化的支持向量机(RS-SVM)在红外光谱定量中的应用. 通过粗糙集分类的方法对多组分污染气体红外光谱对应的特征波长段进行核函数初始数据的优化, 再将优化后的核函数带入支持向量机, 从而将二维混合光谱信息投影到高维空间, 再进行单种气体浓度的反演运算. 通过采用LS-SVM和PCA-SVM两种典型的光谱数据处理算法作对比, 对五种混合气体各组分定量分析进行比较. 当光谱可分度高时, 三种方法的预测值都接近标准值, 平均误差接近于0.13; 而当光谱可分度低时, RS-SVM的预测值比前两种更精确, 且当待测种类越多时, 该方法精度和运算时间的优势越显著.
Abstract
This paper introduced the application of support vector machines (SVM) regression method based on kernel function optimized by the rough set in the infrared spectrum quantitative calculation. According to kernel function with the rough set classification’s method, the spectrum data (characteristic wavelength section) is optimized. The kernel function leads support vector machines, and the SVM project the two-dimensional room to the multi-dimensional room, and calculate the concentration of every kind of gas in multi-component pollution gas. By using two kinds of typical spectrum data processing algorithm to make the contrast, the comparison of five kinds of gaseous mixture various proximate analysis is carried out, and when the spectrum separable rate is high, the predicted values of the three methods approach the normal value, and the average error is smaller than 0.13; but when the spectrum separable rate is low, the RS-SVM predicted value is more precise than the first two kinds. Experimental data show that the consequence is better when there are more testing types, and the precision and operation of this method is of more remarkable superiority.
参考文献

[1] SUN Li-xin, GAO Wen(孙立新, 高文). Journal of Wuhan Technical University of Surveying and Mapping(武汉测绘科技大学学报), 1999, 24(4): 306.

[2] ZOU Han-bin, HUANG Shao-nian, LEI Hong-yan(邹汉斌, 黄少年, 雷红艳). Radio Engineering(无线电工程), 2009, 39(2): 19.

[3] SUN Li-xin(孙立新). Patern Recognition and Artificial Intelligence(模式识别与人工智能), 2000, 13(2): 181.

[4] Cheng Cun-gui, Cheng Lu-yao. Third International Conference on Natural Computation IEEE, 2007, 28(9): 1.

[5] Mohd Juhaibin Mat Basri, Wong Yuen Yee, Burhanuddin Yeop Majlis. ICSE of IEEE, 2004, 2(4): 340.

[6] Eitan Hirsch, Eyal Agassi. Applied Optics, 2007, 46(25): 6368.

[7] Katie M Krause, Jerome Genest. Applied Optics, 2006, 45(19): 4686.

[8] YAO Xiao-gang, DAI Lian-kui, FANG Jun(姚肖刚, 戴连奎, 方骏). Control and Instruments in Chemical Industry(化工自动化及仪表), 2004, 31 (2): 48.

[9] Disimile P J, Toy N, Fox C W. Optical Diagnostics in Engineering, 2003, 6(1): 1.

[10] ZOU Xiao-bo, ZHAO Jie-wen(邹小波, 赵杰文). Acta Optica Sinica(光学学报), 2007, 27(7): 1317.

[11] ZHOU Kuan-jiu, ZHANG Shi-rong(周宽久, 张世荣). Computer Engineering and Applications(计算机工程与应用), 2009, 45(1): 159.

[12] WANG Li, HE Yong, LIU Fei(王莉, 何勇, 刘飞). Journal of Infrared and Millimeter Waves(红外与毫米波学报), 2008, 27(1): 52.

[13] Thomas J Karr. IEEE Transactions on Antennas and Propagation, 2007, 55(4): 1122.

陈媛媛, 张记龙, 李晓, 田二明, 王志斌, 刘智超. 基于粗糙集核优化的支持向量机在多组分污染气体定量分析中的研究与应用[J]. 光谱学与光谱分析, 2010, 30(12): 3384. CHEN Yuan-yuan, ZHANG Ji-long, LI Xiao, TIAN Er-ming, WANG Zhi-bin, LIU Zhi-chao. Research on Concentration of Multi-Component Pollution Gas Based on SVM with Kernel Optimized by Rough Set[J]. Spectroscopy and Spectral Analysis, 2010, 30(12): 3384.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!