光学技术, 2019, 45 (6): 724, 网络出版: 2020-01-08  

基于局部梯度插值的显微热成像系统微扫描误差修正技术

Thermal microscope imaging system microscanning error correction technique based on local gradient interpolation
作者单位
燕山大学 信息科学与工程学院 河北省特种光纤与光纤传感重点实验室, 河北 秦皇岛 066004
摘要
显微热成像系统可观测、记录分析细微目标的温度变化过程, 在需要细微热分析的诸多方面有着广泛的发展前景。由于设备加工及工作过程中存在误差, 影响微扫描系统的精度, 使得微扫描系统扫描过程中偏离标准位置, 故采集得到的四幅低分辨力图像会存在误差, 最终影响显微热成像系统高分辨力图像的重建质量。为尽可能降低微扫描误差, 文章提出了基于局部梯度插值与预处理相结合的微扫描误差修正技术, 通过进行模拟仿真和实验证实该技术可以降低系统微扫描误差, 提高系统的空间分辨力。
Abstract
The micro-thermal imaging system can observe and record the temperature change process of subtle targets, and has broad development prospects in many aspects that require detailed thermal analysis. Due to the error in the processing and working process of the device, affecting the accuracy of the micro-scanning system, causing the micro-scanning system deviates from the standard position during the scanning process, so the four low-resolution images acquired have errors, ultimately affecting the reconstruction quality of high resolution images of systems. In order to reduce the micro-scanning error as much as possible, a micro-scanning error correction technique based on local gradient interpolation and pre-processing was proposed. The simulation and experiment prove that the technique can reduce the system micro-scanning error and improve the spatial resolution of the system.
参考文献

[1] 高美静, 许杰, 金伟其, 等. 显微热成像技术研究现状与展望[J]. 激光与红外,2017,47(1):13-18.

    Gao Meijing, Xu Jie, Jin Weiqi, et al. Research status and prospect of thermal microscope imaging technology[J]. Laser and Infrared,2017,47(1):13-18.

[2] 邢素霞, 张俊举, 常本康,等. 非制冷红外热成像技术的发展与现状[J]. 红外与激光工程,2004,33(5):441-444.

    Xing Suxia, Zhang Junju, Chang Benkang, et al. Development and current status of uncooled infrared thermal imaging technology[J]. Infrared and Laser Engineering,2004,33(5):441-444.

[3] 李晓婷, 朱大洲, 潘立刚, 等. 红外显微成像技术及其应用进展[J]. 光谱学与光谱分析,2011,31(9):2313-2317.

    Li Xiaoting, Zhu Dazhou, Pan Ligang, et al. Infrared microscope imaging technology and its application progress[J]. Spectroscopy and Spectral Analysis,2011,31(9):2313-2317.

[4] Staffa E, Bernard V, Kubicek L, et al. Infrared thermography as option for evaluating the treatment effect of percutaneous transluminal angioplasty by patients with peripheral arterial disease[J]. Vascular,2017,25(1):42-49.

[5] 岳静静, 吴之茂, 木二珍, 等. 红外显微热成像系统研究及应用[J]. 红外技术,2017,39(11):973-977.

    Yue Jingjing, Wu Zhimao, Mu Erzhen, et al. Research and application of infrared thermal microscope imaging system[J]. Infrared Technology,2017,39(11):973-977.

[6] 杨铭. 新型微扫描显微热成像系统零点定标及图像处理算法研究[D]. 秦皇岛:燕山大学,2019:2-5.

    Yang Ming. Research on zero point calibration and image processing algorithm of new micro-scanning thermal microscope imaging system[D]. Qinhuangdao: YanShan University,2019:2-5.

[7] 许杰. 显微热成像系统微扫描误差修正理论与技术研究[D]. 秦皇岛:燕山大学,2018:15-26.

    Xu Jie. Thermal microscope imaging system micro-scaning error correction theory and technology research[D]. Qinhuangdao:YanShan University,2018:15-26.

[8] 白俊奇, 陈钱. 基于局部梯度特征的红外微扫描成像技术研究[J]. 光子学报,2008,37(11):2253-2256.

    Bai Junqi, Chen Qian. Infrared microscanning imaging technique based on local gradient feature[J]. Acta Photonica Sinica,2008,37(11):2253-2256.

[9] Cao Y J, Shao Y L. Image processing and optimization based on bilinear interpolation algorithm[J].Journal of Zhongzhou University,2012,29(3),111-113.

[10] Garnett R, Huegerich T, Chui C, et al. A universal noise removal algorithm with an impulse detector[J]. IEEE Transactions on Image Processing,2005,14(11):1747-1754.

[11] 高美静, 顾海华, 关丛荣, 等. 显微热成像系统自适应零点定标[J]. 光电工程,2013,2(40):131-136.

    Gao Meijing, Gu Haihua, Guan Congrong, et al. Adaptive zero calibration of thermal microscope imaging system[J]. Optoelectronic Engineering,2013,2(40):131-136.

[12] 高美静, 金伟其, 王霞, 等. 光学微扫描显微热成像扫描零点定标方法研究[J]. 光学学报,2009,29(8):2175-2179.

    Gao Meijing, Jin Weiqi, Wang Xia, et al. Zero calibration for the designed microscanning thermal microscopic imaging system[J]. Acta Optica Sinica,2009,29(8):2175-2179.

[13] Vandewalle P, Süsstrunk Sabine ,Vetterli M. A frequency domain approach to registration of aliased images with application to super-resolution[J]. Eurasip Journal on Applied Signal Processing,2013,2006(3):1-14.

[14] 张小利, 李雄飞, 李军. 融合图像质量评价指标的相关性分析及性能评估[J]. 自动化学报,2014,40(2):306-315.

    Zhang Xiaoli, Li Xiongfei, Li Jun. Correlation analysis and performance evaluation of fusion image quality evaluation index[J]. Acta Automatica Sinica,2014,40(2):306-315.

[15] 刘秀坚, 任仙怡, 郑义军, 等. 图像融合质量主客观评价相关性分析[J]. 深圳信息职业技术学院学报,2011,9(1):23-30.

    Liu Xiujian, Ren Xianyi, Zheng Yijun, et al. Correlation analysis of subjective and objective evaluation of image fusion quality[J]. Journal of Shenzhen Institute of Information Technology,2011,9(1):23-30.

[16] 狄红卫, 刘显峰. 基于结构相似度的图像融合质量评价[J]. 光子学报,2006,35(5):766-771.

    Di Hongwei, Liu Xianfeng. Evaluation of image fusion quality based on structural similarity[J]. Acta Photonica Sinica,2006,35(5):766-771.

高美静, 王留柱, 谈爱玲, 张博智, 李时雨, 杨铭. 基于局部梯度插值的显微热成像系统微扫描误差修正技术[J]. 光学技术, 2019, 45(6): 724. GAO Meijing, WANG Liuzhu, TAN Ailing, ZHANG Bozhi, LI Shiyu, YANG Ming. Thermal microscope imaging system microscanning error correction technique based on local gradient interpolation[J]. Optical Technique, 2019, 45(6): 724.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!