液晶与显示, 2020, 35 (11): 1095, 网络出版: 2021-01-19   

多壁碳纳米管掺杂的聚合物分散液晶光栅的电光特性

Electro-optical characteristics of polymer-dispersed liquid crystal gratings doped with multi-walled carbon nanotubes
作者单位
1 上海理工大学 光电信息与计算机工程学院, 上海 200093
2 上海理工大学 上海市现代光学系统重点实验室, 上海 200093
摘要
为了提高全息聚合物分散液晶的衍射效率以及降低其驱动电压和阈值电压,通过在聚合物分散液晶中掺杂多壁碳纳米管(MWCNT)研究其对H-PDLC光栅的电光特性的影响。本文采用了全息干涉的方法制备了4种质量分数(0, 0.03%, 0.05%, 0.07%)MWCNT掺杂的H-PDLC光栅。结果表明MWCNT可以提升材料在532 nm处吸收率,从而导致掺杂0.05%多壁碳纳米管的H-PDLC光栅的一级衍射效率可以达到91%。同时引入MWCNT通过降低电阻率、增加电容改变了介质的介电性能,从而增强电场,表现为掺杂0.05% MWCNT时0.68 V/μm的低阈值电压和1.78 V/μm的低饱和电压。另外,随着MWCNT掺杂质量分数增加,H-PDLC的对比度逐渐降低。
Abstract
In order to improve the diffraction efficiency of holographic polymer-dispersed liquid crystal and reduce its driving voltage and threshold voltage, the effect of its electro-optic properties on H-PDLC gratings was studied by doping multi-walled carbon nanotubes (MWCNT) in polymer-dispersed liquid crystal. In this paper, the holographic interference method was used to prepare four mass fraction (0, 0.03%, 0.05%, 0.07%) of MWCNT doped H-PDLC gratings. The results show that MWCNT can increase the absorption rate of the material at 532 nm, resulting in the first-order diffraction efficiency of H-PDLC gratings doped with 005% multi-walled carbon nanotubes can reach 91%. At the same time, the introduction of MWCNT changed the dielectric properties of the dielectric by reducing the resistivity and increasing the capacitance, thereby enhancing the electric field. It shows a low threshold voltage of 0.68 V/μm and a low saturation voltage of 1.78 V/μm when doped with 005% MWCNT. In addition, as the MWCNT doping mass fraction increases, the contrast ratio of H-PDLC gradually decreases.
参考文献

[1] BUNNING T J, NATARAJAN L V, TONDIGLIA V P, et al. Holographic polymer-dispersed liquid crystals (H-PDLCs) [J]. Annual Review of Materials Science, 2000, 30: 83-115.

[2] LI M S, FUH A Y G, LIU J H, et al. Bichromatic optical switch of diffractive light from a BCT photonic crystal based on an azo component-doped HPDLC [J]. Optics Express, 2012, 20(23): 25545-25553.

[3] DIAO Z H, HUANG W B, PENG Z H, et al. Anisotropic waveguide theory for electrically tunable distributed feedback laser from dye-doped holographic polymer dispersed liquid crystal [J]. Liquid Crystals,2014, 41(2): 239-246.

[4] LIU L J, XUAN L, ZHANG G Y, et al. Enhancement of pump efficiency for an organic distributed feedback laser based on a holographic polymer dispersed liquid crystal as an external light feedback layer [J]. Journal of Materials Chemistry C, 2015, 3(21): 5566-5572.

[5] LIU Y J, SUN X W. Electrically tunable two-dimensional holographic photonic crystal fabricated by a single diffractive element [J]. Applied Physics Letters, 2006, 89(17): 171101.

[6] WU P C, YEH E R, ZYRYANOV V Y, et al. Spatial and electrical switching of defect modes in a photonic bandgap device with a polymer-dispersed liquid crystal defect layer [J]. Optics Express, 2014, 22(17): 20278-20283.

[7] FLATAE A M, BURRESI M, ZENG H, et al. Optically controlled elastic microcavities [J]. Light: Science & Applications, 2015, 4(4): e282.

[8] POGUE R T, NATARAJAN L V, SIWECKI S A, et al. Monomer functionality effects in the anisotropic phase separation of liquid crystals [J]. Polymer, 2000, 41(2): 733-741.

[9] CRAMER N B, DAVIES T, O′BRIEN A K, et al. Mechanism and modeling of a thiol-ene photopolymerization [J]. Macromolecules, 2003, 36(12): 4631-4636.

[10] JAZBINEK M, DREVENEK OLENIK I, ZGONIK M, et al. Characterization of holographic polymer dispersed liquid crystal transmission gratings [J]. Journal of Applied Physics, 2001, 90(8): 3831-3837.

[11] BUTLER J J, MALCUIT M S, RODRIGUEZ M A. Diffractive properties of highly birefringent volume gratings: investigation [J]. Journal of the Optical Society of America B, 2002, 19(2): 183-189.

[12] SUTHERLAND R L, TONDIGLIA V P, NATARAJAN L V, et al. Coherent diffraction and random scattering in thiol-ene-based holographic polymer-dispersed liquid crystal reflection gratings [J]. Journal of Applied Physics, 2006, 99(12): 123104.

[13] 刘永刚,郑致刚,彭增辉,等.单体材料结构对全息聚合物分散液晶光栅电光特性的影响[J]. 液晶与显示,2009,24(4): 487-492.

[14] DE SARKAR M, GILL N L, CRAWFORD G P, et al. Effect of monomer functionality on the morphology and performance of the holographic transmission gratings recorded on polymer dispersed liquid crystals [J]. Macromolecules, 2003, 36(3): 630-638.

[15] WU S T, FUH A Y G. Lasing in photonic crystals based on dye-doped holographic polymer-dispersed liquid crystal reflection gratings [J]. Japanese Journal of Applied Physics, 2005, 44(2): 977-980.

[16] KIM E H, WOO J Y, KIM B K. Nanosized-silica-reinforced holographic polymer-dispersed liquid crystals [J]. Macromolecular Rapid Communications, 2006, 27(7): 553-557.

[17] BUSBEE J D, YUHL A T, NATARAJAN L V, et al. SiO2 nanoparticle sequestration via reactive functionalization in holographic polymer-dispersed liquid crystals [J]. Advanced Materials, 2009, 21(36): 3659-3662.

[18] ZHANG M H, ZHENG J H, GUI K, et al. Electro-optical characteristics of holographic polymer dispersed liquid crystal gratings doped with nanosilver [J]. Applied Optics, 2013, 52(31): 7411-7418.

[19] XIN Z, ZHOU J J, OU-YANG Z C. Strain energy and Young′s modulus of single-wall carbon nanotubes calculated from electronic energy-band theory [J]. Physical Review B, 2000, 62(20): 13692-13696.

[20] IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348): 56-58.

[21] NISHIJIMA H, KAMO S, AKITA S, et al. Carbon-nanotube tips for scanning probe microscopy: preparation by a controlled process and observation of deoxyribonucleic acid [J]. Applied Physics Letters, 1999, 74(26): 4061-4063.

[22] NIU J F, DAI P X, WANG K, et al. Enhanced visible-light photocatalytic activity of BiOI–MWCNT composites synthesised via rapid and facile microwave hydrothermal method [J]. Materials Technology, 2019, 34(9): 506-514.

[23] 黄海平,吕连连,陈重镇,等.基于多壁碳纳米管-氧化钨纳米复合材料的多巴胺电化学传感器[J]. 分析化学,2018,46(5): 765-772.

[24] 刘书绘,雷杰,吴媛,等.基于四氧化三钴-多壁碳纳米管纳米复合材料修饰阳极的苯酚/氧气燃料电池的构建[J]. 分析化学,2019,47(8): 1195-1204.

[25] SINGH M A, SARMA D K, HANZEL O, et al. Machinability analysis of multi walled carbon nanotubes filled alumina composites in wire electrical discharge machining process [J]. Journal of the European Ceramic Society, 2017, 37(9): 3107-3114.

[26] TIE W W, YANG G H, BHATTACHARYYA S S, et al. Electric-Field-induced dispersion of multiwalled carbon nanotubes in nematic liquid crystal [J]. The Journal of Physical Chemistry C,2011, 115(44): 21652-21658.

[27] SHAFFER M S P, WINDLE A H. Analogies between polymer solutions and carbon nanotube dispersions [J]. Macromolecules, 1999, 32(20): 6864-6866.

[28] WU Y, CAO H, DUAN M Y, et al. Effects of a chemically modified multiwall carbon nanotubes on electro-optical properties of PDLC films [J]. Liquid Crystals, 2017, 45(7): 1023-1031.

[29] MONTEMEZZANI G, ZGONIK M. Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries [J]. Physical Review E, 1997, 55(1): 1035-1047.

[30] ZHAO X F, ZHANG J, WANG X Q, et al. Polyimide aerogels crosslinked with MWCNT for enhanced visible-light photocatalytic activity [J]. Applied Surface Science, 2019, 478: 266-274.

[31] WU B G, ERDMANN J H, DOANE J W. Response times and voltages for PDLC light shutters [J]. Liquid Crystals, 1989, 5(5): 1453-1465.

[32] LU X C, SONG L, DING T T, et al. CuS–MWCNT based electrochemical sensor for sensitive detection of bisphenol A [J]. Russian Journal of Electrochemistry, 2017, 53(4): 366-373.

张伟伟, 李鹏飞, 沈金荣, 刘悠嵘, 蔡智星, 郑继红. 多壁碳纳米管掺杂的聚合物分散液晶光栅的电光特性[J]. 液晶与显示, 2020, 35(11): 1095. 张伟伟, 李鹏飞, 沈金荣, 刘悠嵘, 蔡智星, 郑继红. Electro-optical characteristics of polymer-dispersed liquid crystal gratings doped with multi-walled carbon nanotubes[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(11): 1095.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!