光学技术, 2018, 44 (1): 82, 网络出版: 2018-02-01  

LD单端泵浦变热导率Nd∶YAG方形热容激光器温度场

Temperature of variable thermal-conductivity Nb∶YAG square heat capacity laser single-end-pumped by LD
作者单位
1 西安建筑科技大学 理学院, 西安 710055
2 西安建筑科技大学 应用物理研究所, 西安 710055
摘要
对方形激光晶体的实际工作特点进行分析, 根据热容激光器的管理模式, 建立泵浦阶段和冷却阶段的晶体热模型, 引入变热传导系数对方程进行求解, 分别得到LD单端泵浦和冷却时热容激光器温度场的表达式。分析了不同的光斑半径、泵浦时间对晶体温度场的影响。计算结果表明: 当泵浦功率为60W、光斑半径为800μm、超高斯阶次为3的脉冲激光二极管对晶体进行泵浦时, 在将Nd∶YAG晶体的热导率视为常量和变量的情况下, 晶体在泵浦端面获得的最大温升分别为149.93℃、180.18℃。激光晶体的尺寸为(20×20×10)mm3, 掺钕离子为1.0%。
Abstract
According to the management mode of the heat capacity laser,the actual working characteristics of square laser crystal was analyzed. And the crystal thermal model of the pump phase and the cooling phase are established respectively. Then the equation of the heat transfer coefficient is introduced and the expression of the temperature field is obtained in single-end pumped by LD. And the influence of different spot radius and pump time on the crystal temperature field is analyzed. The results show that when the pump power is 60W, the super-Gaussian radius is 800μm, and the super - Gaussian order is 3, the thermal conductivity of Nd∶YAG crystal is regarded as constant and non - constant, the maximum temperature rise of the crystal is 149.93℃, 180.18℃ at the pump end. The laser crystal has a size of (20×20×10)mm3, and has an absorption coefficient of 1.0% for the neodymium-doped ion.
参考文献

[1] 王超, 周寿桓, 唐晓军, 等. LD泵浦8.7kW固体热容激光器实验研究[J]. 红外与激光工程, 2008, 37(1): 77-78.

    Wang Chao, Zhou Shouhen, Tang Xiaojun, et al. Experimental investigation on 8.7 kW laser diode pumped solidstate heat capacity laser[J]. Infrared and Laser Engineering, 2008, 37(1): 77-78.

[2] 刘洋, 王超, 唐晓军, 等. LD泵浦Nd∶YAG薄片激光器技术研究[J]. 红外与激光工程, 2011, 41(12): 1306-1309.

    Liu Yang, Wang Chao, Tang Xiaojun ,et al. Study of laser diode-pumped Nd∶YAG disk [J]. Laser Infrared and Laser Engineering, 2011, 41(12): 1306-1309.

[3] 杨永明, 周荣, 过振, 等. LD端抽运下几种激光晶体的端面形变研究[J]. 激光技术, 2006, 30(1): 73-76.

    Yang Yongming, Zhou Rong, Guo Zhen, et al. Study on the end deformation of several LD end-pumped crystals [J]. Laster Technology, 2006, 30(1): 73-76.

[4] 冯祝, 万云芳. LD端面抽运Nd∶GGG激光器热效应研究[J]. 激光技术, 2014, 38(3): 360-363.

    Feng Zhu, Wan Yunfang. Thermal effect of LD end-pumped Nd∶GGG laser[J]. Laster Technology, 2014, 38(3): 360-363

[5] 尹宪华, 朱健强, 祖继锋, 等. 热容型板条激光器的感应折射率计算[J]. 中国激光, 2008, 35(2): 225-229.

    Yin Xianhua, Zhu Jianqiang, Zu Jifeng, et al. Calculation of induced refraction index in heat capacity slab laser[J]. Chinese Journal of Lasters, 2008, 35(2): 225-229.

[6] 岱钦, 乌日娜, 宁日波, 等. 热容运转模式下LD泵浦固体激光器的热效应分析[J]. 光学精密工程, 2008, 16(6): 1025-1028.

    Dai Qin , Wu Rina , Ning Ribo, et al. Analysis of thermal effect of solid state lasers in heat capacity mode[J]. Optics and Precision Engineering, 2008,16(6): 1025-1028.

[7] 白冰, 史彭, 李隆, 等. 圆棒Nd:glass热容激光器的热过程半解析分析[J]. 红外与激光工程, 2012, 41(3):601-606.

    Bai Bing, Shi Peng, Li Long, et al. Semianalytical analysis of the thermal process of a heat capacity Nd:glass laser rod[J]. Infrared and Laser Engineering, 2012,41(3): 601-606.

[8] Wallace J. Commercial disk laser reaches 4 kW output[J]. Laser Focus Wor1d, 2004, 40(9): 19-20.

[9] 史彭, 辛宇, 李隆,等. 矩形截面Nd∶GGG热容激光器热分析[J]. 激光技术, 2011,35(3): 305-307.

    Shi Peng, Xin Yu, Li Long, et al. Thermal analysis of rectangular Nd∶GGG heat capacity lasers[J]. Laser Technology, 2011,35(3): 305-307.

[10] Blázquezsánchez D, Weichelt B. Austerschulte A, et al. Improving the brightness of a multi-kilowatt single thin-disk laser by an aspherical phase front correction[J]. Optics Letters, 2011, 36(6):799-801.

[11] 凌亚文, 刘加平. 双端抽运矩形截面Nd∶GdVO4晶体热效应研究[J]. 西安建筑科技大学学报:自然科学版, 2007,39(5):725-729.

    Ling Yawen, Liu Jiaping. Thermal effect of doudle end pumped rectangle Nd∶GdVO4 crystal[J]. Xi'an University of Architecture and Technology:Natural Science Edition, 2007, 39(5): 725-729.

[12] Wei W, Mali G, Qin Z, et al. Diode-pumped Q-switched Nd∶YAG-KGW Raman laser operating in two-color modulation[J]. Optics Express, 2010, 18(3): 55-61.

[13] Mohammed A M. Analysis of thermal distribution in two end pumping Nd∶YAG laser rod using bacterial foraging optimization algorithm[J]. Pramana Journal of Physics, 2013,8(7): 487-505.

[14] Slack G A, Oliver D W. Thermal conductivity of garnets and phonon scattering by rare-earth ions [J]. Physical Review B, 1971, 4: 592-608.

[15] 马秀华, 唐前进, 胡企铨,等. 固体热容激光器冷却方式的数值模拟[J]. 强激光与粒子束, 2006, 18(12): 1937-1940.

    Ma Xiuhua, Tang Qianjin, Hu Qiquan, et al. Numerical simulation of cooling methods for solid heat capacity laser[J]. High Power Laster And Particle Beams, 2006, 18(12): 1937-1940.

[16] Wei W, Mali G, Qin Z, et al. Diode-pumped Q-switched Nd∶YAG-KGW Raman laser operating in two-color modulation[J]. Optics Express, 2010, 18(3): 55-61.

[17] 徐鹏翔, 李学春, 王江峰,等. 气体冷却激光二极管抽运的固体激光放大模块设计及热管理研究[J]. 中国激光, 2014, 41(10): 1002001-1-1002001-8.

    Xu Pengxiang, Li Xuechun, Wang Jiangfeng, et al. Gas-cooled laser diode-pumped solid-state laser amplification module design and thermal management[J]. Chinses Journal of Lasters, 2014, 41(10): 1002001-1-1002001-8.

[18] 程勇, 郭延龙, 何志祝,等. 相变散热技术在小型高效半导体抽运激光器中的应用研究[J]. 中国激光, 2016, 43(1):0102005-1-0102005-7.

    Cheng Yong, Guo Yanlongl, He Zhizhu, et al. Application research of phase change material heat removal technology for compact high efficiency diode pumped laser[J]. Chinses Journal of Lasters, 2016, 43(1): 0102005-1-0102005-7.

[19] Killi A, Stolzenburg C, Zawischa I, et al. The broad applicability of the disk laser principle-from CW to ps[J]. Proceedings of SPIE, 2009, 7193:1T1-1T9.

李隆, 潘晓瑞, 耿鹰鸽. LD单端泵浦变热导率Nd∶YAG方形热容激光器温度场[J]. 光学技术, 2018, 44(1): 82. LI Long, PAN Xiaorui, GENG Yingge. Temperature of variable thermal-conductivity Nb∶YAG square heat capacity laser single-end-pumped by LD[J]. Optical Technique, 2018, 44(1): 82.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!