红外, 2012, 33 (9): 6, 网络出版: 2012-11-23   

论碲镉汞光电二极管的暗电流(下)

On the Dark Current in Mercury Cadmium Telluride Photodiodes (II)
作者单位
昆明物理研究所,云南 昆明 650223
引用该论文

王忆锋, 毛京湘, 刘黎明, 王丹琳. 论碲镉汞光电二极管的暗电流(下)[J]. 红外, 2012, 33(9): 6.

WANG Yi-feng, MAO Jing-xiang, LIU Li-ming, WANG Dan-lin. On the Dark Current in Mercury Cadmium Telluride Photodiodes (II)[J]. INFRARED, 2012, 33(9): 6.

参考文献

[1] Smith R M, Bonati M, Guzman D. VIRGO-2K 2.25-m HgCdTe Dark Current [C]. SPIE, 2004, 5499: 119-130.

[2] Gravrand O, Mollard L, Boulade O, et al. Ultra Low Dark Current CdHgTe FPAs in the SWIR Range at CEA and Sofradir [C]. SPIE, 2011, 8176: 81761H.

[3] Bangs J, Langell M, Reddy M, et al. Large Format High-operability SWIR and MWIR Focal Plane Array Performance and Capabilities [C]. SPIE, 2011, 8012: 801234.

[4] Cao G, Gong H, Qiu H, et al. Bias-dependent Photocurrent of HgCdTe Photodiodes[J]. Journal of Applied Physics, 2005, 98(6): 064504.

[5] Jozwikowska A, Jozwikowski K, Antoszewskim J, et al. Generation-recombination Effects on Dark Currents in CdTe-passivated Midwave Infrared HgCdTe Photodiodes [J]. Journal of Applied Physics, 2005, 98(17): 014504.

[6] Rais M H, Musca C A, Antoszewski J, et al. Characterisation of Dark Current in Novel Hg1-x Cdx Te Mid-wavelength Infrared Photovoltaic Detectors Based on n-on-p Junctions Formed by Plasma-induced Type Conversion [J]. Journal of Crystal Growth, 214/215: 1106-1110.

[7] McLevige W V, Williams G M, DeWames R E, et al. Variable-area Diode Data Analysis of Surface and Bulk Effects in MWIR HgCdTe/CdTe/sapphire Photodetectors [J]. Semiconductor Science and Technology, 1993, 8(6S): 946-952.

[8] Gopal V, Westerhout R J, Faraone L. Surface Leakage Current Contribution to the Dynamic Resistance and 1/f Noise in Mid-wave Mercury Cadmium Telluride Infrared Photodiodes [J]. Infrared Physics & Technology, 2008, 51(6): 532-536.

[9] Bacon C M, McMurtry C W, Pipher J L, et al. Effect of Dislocations on Dark Current in LWIR HgCdTe Photodiodes [C]. SPIE, 2010, 7742: 77421U.

[10] Wijewarnasuriya P S, Brill G, Chen Y, et al. Pronounced Auger Suppression in Long Wavelength HgCdTe Devices Grown by Molecular Beam Epitaxy [C]. SPIE, 2007, 6542: 65420G.

[11] Bacon C, Pipher J L, Forrest W J, et al. Diode Characterization of Rockwell LWIR HgCdTe Detector Arrays [C]. SPIE, 2003, 4850: 927-923.

[12] Hu W D, Chen X S, Yin F, et al. Analysis of Temperature Dependence of Dark Current Mechanisms for Long-wavelength HgCdTe Photovoltaic Infrared Detectors [J]. Journal of Applied Physics, 2009, 105(4): 104502.

[13] Jówikowski K, Kopytko M, Rogalski A, et al. Enhanced Numerical Analysis of Current-voltage Characteristics of Long Wavelength Infrared n-on-p HgCdTe Photodiodes [J]. Journal of Applied Physics, 2010, 108(2): 07419.

[14] Kocer H, Arslan Y, Besikci C. Numerical Analysis of Long Wavelength Infrared HgCdTe Photodiodes [J]. Infrared Physics & Technology, 2012, 55(17): 49-55.

[15] Quan Z J, Li Z F, Hu W D, et al. Parameter Determination from Resistance-voltage Curve for Long-wavelength HgCdTe Photodiode [J]. Journal of Applied Physics, 2006, 100(1): 084504.

[16] Bhan R J, Koul S K, Basu P K. Analysis of the Ideality Factor in Surface Leaky HgCdTe Photodiodes for the Long-wavelength Infrared Region [J]. Semiconductor Science and Technology, 1997, 12(4): 448-454.

[17] Wenus J, Rutkowski J, Rogalski A. Surface Leakage Current in HgCdTe Photodiodes [C]. SPIE, 2002, 4650: 250-258.

[18] Tobin S P. Thermal Cycling-induced Changes in Excess Dark Current in Very Long-wavelength HgCdTe Photodiodes at Low Temperature [J]. Journal of Electronic Materials, 2006, 35(6): 1411-1416.

[19] 王忆锋, 余连杰, 陈洁, 等. 基于探测距离的军用红外探测器分类 [J]. 红外, 2011, 32(2): 34-38.

[20] Henini M, Razeghi M. Handbook of Infrared Detection Technologies [M]. UK Oxford: Elsevier Science Ltd, 2002.

[21] Schlessinger M, Chan W S. Design Requirements for Large-scale Focal Planes [C]. SPIE, 1981, 282: 2-14.

[22] Capper P, Garland J W. Mercury Cadmium Telluride: Growth, Properties and Applications [M]. London: John Wiley & Sons, Ltd, 2011.

[23] 吴宗凡, 柳美琳, 张绍举, 等著. 红外与微光技术 [M]. 北京: 国防工业出版社, 1998.

[24] Dereniak E L, Boreman G D. Infrared Detectors and Systems [M]. New York: John Wiley & Sons, Inc, 1996.

[25] Cockrum C A. HgCdTe Material Properties and Their Influence on IR FPA Performance [C]. SPIE, 1996, 2685: 2-15.

[26] Rogalski A. Infrared Photon Detectors [M]. Bellingham: SPIE Optical Engineering Press, 1995.

[27] Robert F P著. 黄如, 王漪, 王金延, 等译. 韩汝琦校. 半导体器件基础 [M]. 北京: 电子工业出版社, 2004.

[28] Donald A N著. 赵毅强, 姚素英, 解晓东, 等译. 半导体物理与器件(第三版) [M]. 北京: 电子工业出版社, 2005.

[29] Saxena R S, Bhan R K, Sareen L, et al. Bias Dependence of Photo-response in HgCdTe Photodiodes Due to Series Resistance [J]. Infrared Physics & Technology, 2011, 54(18): 108-113.

[30] Parodos T, Fitzgerald E A, Caster A, et al. Effect of Dislocations on VLWIR HgCdTe Photodiodes [J]. Journal of Electronic Materials, 2007, 36(8): 1068-1076.

[31] 犬石嘉雄, 滨川圭弘, 白藤纯嗣著. 张志杰, 郗小林, 雷京贵, 等译. 周绍康校. 半导体物理 [M]. 北京: 科学出版社, 1986.

[32] 褚君浩. 窄禁带半导体物理学 [M]. 北京: 科学出版社, 2005.

[33] Saxena P K, Chakrabarti P. Computer Modeling of MWIR Single Heterojunction Photodetector Based on Mercury Cadmium Telluride [J]. Infrared Physics & Technology, 2009, 52(5): 196-203.

[34] Willardson R K, Beer A C. Semiconductors and Semimetals (Vol.18): Mercury Cadmium Telluride [M]. New York: Academic Press, 1981.

[35] D’Souza A I, Dawson L C, Staller C O, et al. VLWIR HgCdTe Photovoltaic Detectors Performance [C]. SPIE, 2000, 4028: 343-352.

[36] Mahlein K M, Bauer A, Bitterlich H, et al. Next Generation IR Sensor Technology for Space Applications at AIM [C]. SPIE, 2008, 7106: 416-425.

[37] Saxena P K. Modeling and Simulation of HgCdTe Based p + -n-n + LWIR Photodetector [J]. Infrared Physics & Technology, 2011, 54(17): 25-33.

[38] Hopkins F K, Boyd J T. Dark Current Analysis of InSb Photodiodes [J]. Infrared Physics, 1984, 24: 391-395.

[39] Gilmore A S, Bangs J, Gerrish A. I-V Modeling of Current Limiting Mechanisms in HgCdTe FPA Detectors [C]. SPIE, 2004, 5563: 46-54.

[40] Richwine R, Balcerak R, Freyvogel K, et al. A HgCdTe Detector/FPA/sensor Model for Evaluation of VLWIR to SWIR Sensors with an Assessment of SWIR Sensors for Strategic and Tactical Missions [C]. SPIE, 2006, 6294: 62940E.

[41] Terrier B, Delannoy A, Chorier P, et al. LWIR and VLWIR Detectors Development at SOFRADIR for Space Applications [C]. SPIE, 2010, 7826: 382-393.

[42] Gopal V, Singh S K, Mehra R M. Excess Dark Currents in HgCdTe p + -n Junction Diodes [J]. Semiconductor Science and Technology, 2001, 16(5): 372-376.

[43] Bahir G, Garber V, Rosenfeld D. Planar p-on-n HgCdTe Heterostructure Infrared Photodiodes [J]. Applied Physics Letters, 2001, 78(4): 1331.

[44] Wollrab R, Bauer A, Bitterlich H, et al. Planar n-on-p HgCdTe FPAs for LWIR and VLWIR Applications [J]. Journal of Electronic Materials, 2011, 40(8): 1618-1623.

[45] Vasilyev V V, Predein A V. Influence of Graded p-P Heterojunction Potential Barrier on Characteristics of Three-dimensional HgCdTe Photodiode [C]. SPIE, 2005, 5834: 83-91.

[46] Hu W, Chen X, Ye Z, et al. Accurate Simulation of Temperature-Dependent Dark Current in HgCdTe Infrared Detectors Assisted by Analytical Modeling [J]. Journal of Electronic Materials, 2010, 39(2): 981-985.

[47] Tidrow M Z, Beck W A, Clark W W, et al. Device Physics and Focal Plane Applications of QWIP and MCT [J]. Opto-Electronic Review, 1999, 7(4): 283-296.

[48] Destefanis G, Tribolet P, Vuillermet M, et al. MCT IR detectors in France [C]. SPIE, 2011, 8012: 801235.

[49] Gravrand O, Borniol E D, Bisotto S, et al. From LWIR to VLWIR FPAs Made with HgCdTe at Defir [C]. SPIE, 2006, 6361: 328-337.

[50] Ziegler J, Eich D, Hanna S, et al. Recent Results of Two-dimensional LW- and VLW-HgCdTe IR FPAs at AIM [C]. SPIE, 2010, 7660: 766038.

[51] Sarusi G, Zemel A, Sher A, et al. Forward Tunneling Current in HgCdTe Photodiodes [J]. Journal of Applied Physics, 1994, 76(2): 4420.

[52] Zemel A, Lukomsky I, Weiss E. Mechanism of Carrier Transport across the Junction of Narrow Band-gap Planar n-p HgCdTe Photodiodes Grown by Liquid-phase Epitaxy [J]. Journal of Applied Physics, 2005, 98(5): 054574.

[53] Park S M, Kim J M, Lee H C, et al. Suppression of Reverse Bias Tunneling Current in HgCdTe Photodiodes Formed by Rapid Thermal Diffusion [C]. SPIE, 1997, 3061: 78-83.

[54] Kinch M A, Wan C F, Schaake H, et al. Universal 1/f Noise Model for Reverse Biased Diodes [J]. Applied Physics Letters, 2009, 94(22): 193508.

[55] Juang F S, Su Y K, Chang S M, et al. Analysis of the Dark Current of Focal-plane-array Hg1-x Cdx Te Diode [J]. Materials Chemistry and Physics, 2000, 64(18): 131-136.

[56] Gopal V, Singh S K, Mehra R M. Analysis of Dark Current Contributions in Mercury Cadmium Telluride Junction Diodes [J]. Infrared Physics & Technology, 2002, 43(6): 317-326.

[57] Gopal V, Gupta S, Bhan R K, et al. Modeling of Dark Characteristics of Mercury Cadmium Telluride n + -p Junctions [J]. Infrared Physics & Technology, 2003, 44(18): 143-152.

[58] Singh S K, Gopal V, Bhan R K, et al. An Analysis of the Dynamic Resistance Variation as a Function of Reverse Bias Voltage in a HgCdTe Diode [J]. Semiconductor Science and Technology, 2000, 15(2): 752-755.

[59] Willardson R K, Beer A C. Semiconductors and Semimetals (Vol.18): Mercury Cadmium Telluride [M]. New York: Academic Press, 1981.

[60] Quan Z J, Chen G B, Sun L Z, et al. Effects of Carrier Degeneracy and Conduction Band Non-parabolicity on the Simulation of HgCdTe Photovoltaic Devices [J]. Infrared Physics & Technology, 2007, 50(17): 1-8.

[61] Rais M H, Musca C A, Dell J M, et al. HgCdTe Photovoltaic Detectors Fabricated Using a New Junction Formation Technology [J]. Microelectronics Journal, 2000, 31(2): 545-551.

[62] Gopal V, Gupta S. Contribution of Dislocations to 1/ f Noise in Mercury Cadmium Telluride Infrared Photovoltaic Detectors [J]. Infrared Physics & Technology, 2006, 48(17): 59-66.

[63] Gumenjuk-Sichevskaya J V, Sizov F F. Currents in Narrow-gap Photodiodes [J]. Semiconductor Science and Technology, 1999, 14(11): 1124-1131.

[64] Yin F, Hu W D, Zhang B, et al. Simulation of Laser Beam Induced Current for HgCdTe Photodiodes with Leakage Current [J]. Optical and Quantum Electronics, 2009, 41(11/13): 805-810.

[65] Redfern D A, Fang W, Ito K, et al. Investigation of Laser Beam-induced Current Techniques for Heterojunction Photodiode Characterization [J]. Journal of Applied Physics, 2005, 98(19): 043501.

[66] Sun T, Li Y, Chen X, et al. The Dark Current Mechanism of HgCdTe Photovoltaic Detector Passivated by Different Structure [C]. SPIE, 2005, 5640: 26-33.

[67] Qiao H, Hu W, Ye Z, et al. Influence of Hydrogenation on the Dark Current Mechanism of HgCdTe Photovoltaic Detectors [J]. Journal of Semiconductors, 2010, 31(19): 036003.

[68] Bhan R K, Srivastava V, Saxena R S, et al. Improved High Resistivity ZnS Films on HgCdTe for Passivation of Infrared Devices [J]. Infrared Physics & Technology, 2010, 53(5): 404-409.

[69] Radford W A. Photovoltaic Detector with Integrated Dark Current Offset Correction: US, 5663564 [P]. 1997-09-02.

[70] Dreiske P D, Turner A M, Forehand D I. Method of Making Photodiodes for Low Dark Current Operation Having Geometric Enhancement: US, 5593902 [P]. 1997-01-14.

[71] Dreiske P D, Turner A M, Forehand D I. Geometric Enhancement of Photodiodes for Low Dark Current Operation: US, 5665998 [P]. 1997-09-09.

[72] Klipstein P. A Unipolar Semiconductor Photodetector with Suppressed Dark Current and Method for Producing the Same: EP, 2249400 [P]. 2010-11-23.

[73] Jurgen M. Dark Current Reduction for Large Area Photodiodes: WO, 10009462 [P]. 2010-01-21.

[74] Pradip M, Beck J D, Skokan M R. A Radiation Detector Having a Bandgap Engineered Absorber: EP, 2284895 [P]. 2011-02-10.

[75] Klipstein P. Depletion-less Photodiode with Suppressed Dark Current and Method for Producing the Same: WO, 05004243 [P]. 2005-01-13.

[76] Maimon S. Reduced Dark Current Photodetector: WO, 07107973 [P]. 2010-03-30.

[77] Velicu S, Grein C, Rafol S B. Photodetector with Dark Current Reduction: US, 07820971 [P]. 2010-10-26.

王忆锋, 毛京湘, 刘黎明, 王丹琳. 论碲镉汞光电二极管的暗电流(下)[J]. 红外, 2012, 33(9): 6. WANG Yi-feng, MAO Jing-xiang, LIU Li-ming, WANG Dan-lin. On the Dark Current in Mercury Cadmium Telluride Photodiodes (II)[J]. INFRARED, 2012, 33(9): 6.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!