红外, 2012, 33 (9): 6, 网络出版: 2012-11-23   

论碲镉汞光电二极管的暗电流(下)

On the Dark Current in Mercury Cadmium Telluride Photodiodes (II)
作者单位
昆明物理研究所,云南 昆明 650223
摘要
对于工作在1 ~ 30 m波段的各种红外光电探测器来说,碲镉汞(Mercury Cadmium Telluride, MCT)已经成为最重要的 一种半导体材料。为了获得最优的性能,MCT探测器的暗电流必须降至最小。主要根据近年来的部分英文文献,从基本概念入手,介绍了有关MCT光电二极 管暗电流研究的发展情况,并讨论了对于MCT光电二极管暗电流有关问题的理解和体会。
Abstract
For various infrared photoelectric detectors operating in the wavelength region from 1 m to 30 m, mercury cadmium telluride (MCT) has become the most important semiconductor material. To obtain the best performance, the dark current in the MCT detectors must be minimized. By summarizing and analyzing the related references published in recent years, the progress of the research on MCT dark current is presented and the understanding and comprehension of the dark current in MCT photodiodes are discussed.
参考文献

[1] Smith R M, Bonati M, Guzman D. VIRGO-2K 2.25-m HgCdTe Dark Current [C]. SPIE, 2004, 5499: 119-130.

[2] Gravrand O, Mollard L, Boulade O, et al. Ultra Low Dark Current CdHgTe FPAs in the SWIR Range at CEA and Sofradir [C]. SPIE, 2011, 8176: 81761H.

[3] Bangs J, Langell M, Reddy M, et al. Large Format High-operability SWIR and MWIR Focal Plane Array Performance and Capabilities [C]. SPIE, 2011, 8012: 801234.

[4] Cao G, Gong H, Qiu H, et al. Bias-dependent Photocurrent of HgCdTe Photodiodes[J]. Journal of Applied Physics, 2005, 98(6): 064504.

[5] Jozwikowska A, Jozwikowski K, Antoszewskim J, et al. Generation-recombination Effects on Dark Currents in CdTe-passivated Midwave Infrared HgCdTe Photodiodes [J]. Journal of Applied Physics, 2005, 98(17): 014504.

[6] Rais M H, Musca C A, Antoszewski J, et al. Characterisation of Dark Current in Novel Hg1-x Cdx Te Mid-wavelength Infrared Photovoltaic Detectors Based on n-on-p Junctions Formed by Plasma-induced Type Conversion [J]. Journal of Crystal Growth, 214/215: 1106-1110.

[7] McLevige W V, Williams G M, DeWames R E, et al. Variable-area Diode Data Analysis of Surface and Bulk Effects in MWIR HgCdTe/CdTe/sapphire Photodetectors [J]. Semiconductor Science and Technology, 1993, 8(6S): 946-952.

[8] Gopal V, Westerhout R J, Faraone L. Surface Leakage Current Contribution to the Dynamic Resistance and 1/f Noise in Mid-wave Mercury Cadmium Telluride Infrared Photodiodes [J]. Infrared Physics & Technology, 2008, 51(6): 532-536.

[9] Bacon C M, McMurtry C W, Pipher J L, et al. Effect of Dislocations on Dark Current in LWIR HgCdTe Photodiodes [C]. SPIE, 2010, 7742: 77421U.

[10] Wijewarnasuriya P S, Brill G, Chen Y, et al. Pronounced Auger Suppression in Long Wavelength HgCdTe Devices Grown by Molecular Beam Epitaxy [C]. SPIE, 2007, 6542: 65420G.

[11] Bacon C, Pipher J L, Forrest W J, et al. Diode Characterization of Rockwell LWIR HgCdTe Detector Arrays [C]. SPIE, 2003, 4850: 927-923.

[12] Hu W D, Chen X S, Yin F, et al. Analysis of Temperature Dependence of Dark Current Mechanisms for Long-wavelength HgCdTe Photovoltaic Infrared Detectors [J]. Journal of Applied Physics, 2009, 105(4): 104502.

[13] Jówikowski K, Kopytko M, Rogalski A, et al. Enhanced Numerical Analysis of Current-voltage Characteristics of Long Wavelength Infrared n-on-p HgCdTe Photodiodes [J]. Journal of Applied Physics, 2010, 108(2): 07419.

[14] Kocer H, Arslan Y, Besikci C. Numerical Analysis of Long Wavelength Infrared HgCdTe Photodiodes [J]. Infrared Physics & Technology, 2012, 55(17): 49-55.

[15] Quan Z J, Li Z F, Hu W D, et al. Parameter Determination from Resistance-voltage Curve for Long-wavelength HgCdTe Photodiode [J]. Journal of Applied Physics, 2006, 100(1): 084504.

[16] Bhan R J, Koul S K, Basu P K. Analysis of the Ideality Factor in Surface Leaky HgCdTe Photodiodes for the Long-wavelength Infrared Region [J]. Semiconductor Science and Technology, 1997, 12(4): 448-454.

[17] Wenus J, Rutkowski J, Rogalski A. Surface Leakage Current in HgCdTe Photodiodes [C]. SPIE, 2002, 4650: 250-258.

[18] Tobin S P. Thermal Cycling-induced Changes in Excess Dark Current in Very Long-wavelength HgCdTe Photodiodes at Low Temperature [J]. Journal of Electronic Materials, 2006, 35(6): 1411-1416.

[19] 王忆锋, 余连杰, 陈洁, 等. 基于探测距离的军用红外探测器分类 [J]. 红外, 2011, 32(2): 34-38.

[20] Henini M, Razeghi M. Handbook of Infrared Detection Technologies [M]. UK Oxford: Elsevier Science Ltd, 2002.

[21] Schlessinger M, Chan W S. Design Requirements for Large-scale Focal Planes [C]. SPIE, 1981, 282: 2-14.

[22] Capper P, Garland J W. Mercury Cadmium Telluride: Growth, Properties and Applications [M]. London: John Wiley & Sons, Ltd, 2011.

[23] 吴宗凡, 柳美琳, 张绍举, 等著. 红外与微光技术 [M]. 北京: 国防工业出版社, 1998.

[24] Dereniak E L, Boreman G D. Infrared Detectors and Systems [M]. New York: John Wiley & Sons, Inc, 1996.

[25] Cockrum C A. HgCdTe Material Properties and Their Influence on IR FPA Performance [C]. SPIE, 1996, 2685: 2-15.

[26] Rogalski A. Infrared Photon Detectors [M]. Bellingham: SPIE Optical Engineering Press, 1995.

[27] Robert F P著. 黄如, 王漪, 王金延, 等译. 韩汝琦校. 半导体器件基础 [M]. 北京: 电子工业出版社, 2004.

[28] Donald A N著. 赵毅强, 姚素英, 解晓东, 等译. 半导体物理与器件(第三版) [M]. 北京: 电子工业出版社, 2005.

[29] Saxena R S, Bhan R K, Sareen L, et al. Bias Dependence of Photo-response in HgCdTe Photodiodes Due to Series Resistance [J]. Infrared Physics & Technology, 2011, 54(18): 108-113.

[30] Parodos T, Fitzgerald E A, Caster A, et al. Effect of Dislocations on VLWIR HgCdTe Photodiodes [J]. Journal of Electronic Materials, 2007, 36(8): 1068-1076.

[31] 犬石嘉雄, 滨川圭弘, 白藤纯嗣著. 张志杰, 郗小林, 雷京贵, 等译. 周绍康校. 半导体物理 [M]. 北京: 科学出版社, 1986.

[32] 褚君浩. 窄禁带半导体物理学 [M]. 北京: 科学出版社, 2005.

[33] Saxena P K, Chakrabarti P. Computer Modeling of MWIR Single Heterojunction Photodetector Based on Mercury Cadmium Telluride [J]. Infrared Physics & Technology, 2009, 52(5): 196-203.

[34] Willardson R K, Beer A C. Semiconductors and Semimetals (Vol.18): Mercury Cadmium Telluride [M]. New York: Academic Press, 1981.

[35] D’Souza A I, Dawson L C, Staller C O, et al. VLWIR HgCdTe Photovoltaic Detectors Performance [C]. SPIE, 2000, 4028: 343-352.

[36] Mahlein K M, Bauer A, Bitterlich H, et al. Next Generation IR Sensor Technology for Space Applications at AIM [C]. SPIE, 2008, 7106: 416-425.

[37] Saxena P K. Modeling and Simulation of HgCdTe Based p + -n-n + LWIR Photodetector [J]. Infrared Physics & Technology, 2011, 54(17): 25-33.

[38] Hopkins F K, Boyd J T. Dark Current Analysis of InSb Photodiodes [J]. Infrared Physics, 1984, 24: 391-395.

[39] Gilmore A S, Bangs J, Gerrish A. I-V Modeling of Current Limiting Mechanisms in HgCdTe FPA Detectors [C]. SPIE, 2004, 5563: 46-54.

[40] Richwine R, Balcerak R, Freyvogel K, et al. A HgCdTe Detector/FPA/sensor Model for Evaluation of VLWIR to SWIR Sensors with an Assessment of SWIR Sensors for Strategic and Tactical Missions [C]. SPIE, 2006, 6294: 62940E.

[41] Terrier B, Delannoy A, Chorier P, et al. LWIR and VLWIR Detectors Development at SOFRADIR for Space Applications [C]. SPIE, 2010, 7826: 382-393.

[42] Gopal V, Singh S K, Mehra R M. Excess Dark Currents in HgCdTe p + -n Junction Diodes [J]. Semiconductor Science and Technology, 2001, 16(5): 372-376.

[43] Bahir G, Garber V, Rosenfeld D. Planar p-on-n HgCdTe Heterostructure Infrared Photodiodes [J]. Applied Physics Letters, 2001, 78(4): 1331.

[44] Wollrab R, Bauer A, Bitterlich H, et al. Planar n-on-p HgCdTe FPAs for LWIR and VLWIR Applications [J]. Journal of Electronic Materials, 2011, 40(8): 1618-1623.

[45] Vasilyev V V, Predein A V. Influence of Graded p-P Heterojunction Potential Barrier on Characteristics of Three-dimensional HgCdTe Photodiode [C]. SPIE, 2005, 5834: 83-91.

[46] Hu W, Chen X, Ye Z, et al. Accurate Simulation of Temperature-Dependent Dark Current in HgCdTe Infrared Detectors Assisted by Analytical Modeling [J]. Journal of Electronic Materials, 2010, 39(2): 981-985.

[47] Tidrow M Z, Beck W A, Clark W W, et al. Device Physics and Focal Plane Applications of QWIP and MCT [J]. Opto-Electronic Review, 1999, 7(4): 283-296.

[48] Destefanis G, Tribolet P, Vuillermet M, et al. MCT IR detectors in France [C]. SPIE, 2011, 8012: 801235.

[49] Gravrand O, Borniol E D, Bisotto S, et al. From LWIR to VLWIR FPAs Made with HgCdTe at Defir [C]. SPIE, 2006, 6361: 328-337.

[50] Ziegler J, Eich D, Hanna S, et al. Recent Results of Two-dimensional LW- and VLW-HgCdTe IR FPAs at AIM [C]. SPIE, 2010, 7660: 766038.

[51] Sarusi G, Zemel A, Sher A, et al. Forward Tunneling Current in HgCdTe Photodiodes [J]. Journal of Applied Physics, 1994, 76(2): 4420.

[52] Zemel A, Lukomsky I, Weiss E. Mechanism of Carrier Transport across the Junction of Narrow Band-gap Planar n-p HgCdTe Photodiodes Grown by Liquid-phase Epitaxy [J]. Journal of Applied Physics, 2005, 98(5): 054574.

[53] Park S M, Kim J M, Lee H C, et al. Suppression of Reverse Bias Tunneling Current in HgCdTe Photodiodes Formed by Rapid Thermal Diffusion [C]. SPIE, 1997, 3061: 78-83.

[54] Kinch M A, Wan C F, Schaake H, et al. Universal 1/f Noise Model for Reverse Biased Diodes [J]. Applied Physics Letters, 2009, 94(22): 193508.

[55] Juang F S, Su Y K, Chang S M, et al. Analysis of the Dark Current of Focal-plane-array Hg1-x Cdx Te Diode [J]. Materials Chemistry and Physics, 2000, 64(18): 131-136.

[56] Gopal V, Singh S K, Mehra R M. Analysis of Dark Current Contributions in Mercury Cadmium Telluride Junction Diodes [J]. Infrared Physics & Technology, 2002, 43(6): 317-326.

[57] Gopal V, Gupta S, Bhan R K, et al. Modeling of Dark Characteristics of Mercury Cadmium Telluride n + -p Junctions [J]. Infrared Physics & Technology, 2003, 44(18): 143-152.

[58] Singh S K, Gopal V, Bhan R K, et al. An Analysis of the Dynamic Resistance Variation as a Function of Reverse Bias Voltage in a HgCdTe Diode [J]. Semiconductor Science and Technology, 2000, 15(2): 752-755.

[59] Willardson R K, Beer A C. Semiconductors and Semimetals (Vol.18): Mercury Cadmium Telluride [M]. New York: Academic Press, 1981.

[60] Quan Z J, Chen G B, Sun L Z, et al. Effects of Carrier Degeneracy and Conduction Band Non-parabolicity on the Simulation of HgCdTe Photovoltaic Devices [J]. Infrared Physics & Technology, 2007, 50(17): 1-8.

[61] Rais M H, Musca C A, Dell J M, et al. HgCdTe Photovoltaic Detectors Fabricated Using a New Junction Formation Technology [J]. Microelectronics Journal, 2000, 31(2): 545-551.

[62] Gopal V, Gupta S. Contribution of Dislocations to 1/ f Noise in Mercury Cadmium Telluride Infrared Photovoltaic Detectors [J]. Infrared Physics & Technology, 2006, 48(17): 59-66.

[63] Gumenjuk-Sichevskaya J V, Sizov F F. Currents in Narrow-gap Photodiodes [J]. Semiconductor Science and Technology, 1999, 14(11): 1124-1131.

[64] Yin F, Hu W D, Zhang B, et al. Simulation of Laser Beam Induced Current for HgCdTe Photodiodes with Leakage Current [J]. Optical and Quantum Electronics, 2009, 41(11/13): 805-810.

[65] Redfern D A, Fang W, Ito K, et al. Investigation of Laser Beam-induced Current Techniques for Heterojunction Photodiode Characterization [J]. Journal of Applied Physics, 2005, 98(19): 043501.

[66] Sun T, Li Y, Chen X, et al. The Dark Current Mechanism of HgCdTe Photovoltaic Detector Passivated by Different Structure [C]. SPIE, 2005, 5640: 26-33.

[67] Qiao H, Hu W, Ye Z, et al. Influence of Hydrogenation on the Dark Current Mechanism of HgCdTe Photovoltaic Detectors [J]. Journal of Semiconductors, 2010, 31(19): 036003.

[68] Bhan R K, Srivastava V, Saxena R S, et al. Improved High Resistivity ZnS Films on HgCdTe for Passivation of Infrared Devices [J]. Infrared Physics & Technology, 2010, 53(5): 404-409.

[69] Radford W A. Photovoltaic Detector with Integrated Dark Current Offset Correction: US, 5663564 [P]. 1997-09-02.

[70] Dreiske P D, Turner A M, Forehand D I. Method of Making Photodiodes for Low Dark Current Operation Having Geometric Enhancement: US, 5593902 [P]. 1997-01-14.

[71] Dreiske P D, Turner A M, Forehand D I. Geometric Enhancement of Photodiodes for Low Dark Current Operation: US, 5665998 [P]. 1997-09-09.

[72] Klipstein P. A Unipolar Semiconductor Photodetector with Suppressed Dark Current and Method for Producing the Same: EP, 2249400 [P]. 2010-11-23.

[73] Jurgen M. Dark Current Reduction for Large Area Photodiodes: WO, 10009462 [P]. 2010-01-21.

[74] Pradip M, Beck J D, Skokan M R. A Radiation Detector Having a Bandgap Engineered Absorber: EP, 2284895 [P]. 2011-02-10.

[75] Klipstein P. Depletion-less Photodiode with Suppressed Dark Current and Method for Producing the Same: WO, 05004243 [P]. 2005-01-13.

[76] Maimon S. Reduced Dark Current Photodetector: WO, 07107973 [P]. 2010-03-30.

[77] Velicu S, Grein C, Rafol S B. Photodetector with Dark Current Reduction: US, 07820971 [P]. 2010-10-26.

王忆锋, 毛京湘, 刘黎明, 王丹琳. 论碲镉汞光电二极管的暗电流(下)[J]. 红外, 2012, 33(9): 6. WANG Yi-feng, MAO Jing-xiang, LIU Li-ming, WANG Dan-lin. On the Dark Current in Mercury Cadmium Telluride Photodiodes (II)[J]. INFRARED, 2012, 33(9): 6.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!