激光与光电子学进展, 2016, 53 (6): 060002, 网络出版: 2016-06-06   

利用光纤产生平坦超连续谱的研究进展 下载: 618次

Research Progress Toward Flat Supercontinuum Generation in Fibers
作者单位
1 中国科学院成都文献情报中心, 四川 成都 610041
2 中国科学院上海应用物理研究所, 上海 201800
摘要
随着20世纪90年代末光子晶体光纤的问世,人们利用这种具有诸多优良特性的新型光导纤维极大地拓展了制造超宽带、高亮度相干超连续谱光源的研究空间,大批新技术、新方法不断涌现。在实际应用中,采用在宽波段范围内产生的平坦超连续谱光源,不仅可以满足系统对光谱带宽的要求,还能提高测量精度,降低功率均衡的技术难度,平坦超连续谱光源已成为国内外研究机构的重要研发方向。简要介绍了国外各机构的相关研究项目信息,对利用超短脉冲及连续光抽运光纤产生超连续谱及光谱调控技术的发展现状进行了总结,对平坦超连续谱的发展方向进行了展望。
Abstract
With the advent of photonic crystal fiber in 1990s, researchers extend the research on the broadband high-brightness coherent supercontinuum light source. A lot of new technologies and new methods are emerging. In practical applications, the broadband high-brightness flat supercontinuum light source can not only satisfy system requirements on spectral bandwidth, but also improve detection accuracy and decrease difficulty to equalize the optical power. The supercontinuum light source has become an important research direction. The latest supercontinuum projects are introduced, then the research progress in supercontinuum generation in fibers with ultrashort pulses and continuous waves and the status of spectral manipulation are reviewed, and the prospect and applications of supercontinuum development are presented.
参考文献

[1] Morioka T, Takara H, Kawanishi S, et al.. 1 Tbit/s (100 Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source[J]. Electronics Letters, 1996, 32(10): 906-907.

[2] Morioka T, Mori K, Kawanishi S, et al.. Multi-WDM-channel, Gbit/s pulse generation from a single laser source utilizing LD-pumped supercontinuum in optical fibers[J]. IEEE Photonics Technology Letters, 1994, 6(3): 365-368.

[3] Liu B, Zhang L J, Xin X J, et al.. Symmetric terabit WDM pre-DFT OFDM access network using PCF-supercontinuum[J]. Optics Express, 2012, 20(22): 24356-24363.

[4] Nguyen-The Q, Matsuura M, Kishi N. WDM-to-OTDM conversion using supercontinuum generation in a highly nonlinear fiber[J]. IEEE Photonics Technology Letters, 2014, 26(18): 1882-1885.

[5] Langridge J M, Laurila T, Watt R S, et al.. Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source[J]. Optics Express, 2008, 16(14): 10178-10188.

[6] Chen Y W, Raikkonen E, Kaasalainen S, et al.. Two-channel hyperspectral LiDAR with a supercontinuum laser source[J]. Sensors, 2010, 10(7): 7057-7066.

[7] Manninen A, Kaariainen T, Parviainen T, et al.. Long distance active hyperspectral sensing using high-power near-infrared supercontinuum light source[J]. Optics Express, 2014, 22(6): 7172-7177.

[8] Kaasalainen S, Lindroos T, Hyyppa J. Toward hyperspectral lidar: Measurement of spectral backscatter intensity with a supercontinuum laser source[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(2): 211-215.

[9] Joo J E, Han L J, Sup R B, et al.. Spectrally sampled OCT imaging based on 1.7-μm continuous-wave supercontinuum source[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18(3): 1200-1208.

[10] Xu B, Nagata T, Yamashita S. Supercontinuum generation in nonlinear fibers using high-energy figure-of-eight mode-locked fiber laser for SD-OCT application[C]. SPIE, 2014, 9157: 91572Y.

[11] Moon S, Kim D Y. Wide-band supercontinuum generation for sub-micron-resolution OCT by using a laser-diode-seeded amplified pulse source[C]. SPIE, 2006, 6103: 61030Y.

[12] 唐弢, 赵晨, 陈志彦, 等. 超高分辨光学相干层析成像技术与材料检测应用[J]. 物理学报, 2015, 64(17): 118-124.

    Tang Tao, Zhao Chen, Chen Zhiyan, et al.. Ultrahigh-resolution optical coherence tomography and its application in inspection of industrial materials[J]. Acta Physica Sinica, 2015, 64(17): 118-124.

[13] Liang W, Xia H, Li J, et al.. Human adipose tissue derived mesenchymal stem cells are resistant to several chemotherapeutic agents[J]. Cytotechnology, 2011, 63(5): 523-530.

[14] 光粒网. NKT激光器助Bioptigen成功实现1 μm SD-OCT成像系统[N/OL]. (2013-05-17) [2015-12-20] http://www.diodelaser.com.cn/a/gongsijujiao/hotpoint/2013/0515/5048.html.

[15] Supercontinuum laser for multi-spectral energy propagation[Z/OL]. [2015-12-20] https://www.sbir.gov/sbirsearch/detail/9073.

[16] 杨进川, 黄宝库, 章正宇, 等. 宽光谱激光雷达探测多种气体的仿真研究[J]. 激光与红外, 2013, 43(7): 743-746.

    Yang Jinchuan, Huang Baoku, Zhang Zhengyu, et al.. Simulation study of detecting various gases based on far-infrared wide spectrum laser lidar[J]. Laser & Infrared, 2013, 43(7): 743-746.

[17] 淦元柳, 王晓飞, 李富栋. 国外机载红外对抗技术的发展[J]. 战术导弹技术, 2011(1): 122-126.

    Gan Yuanliu, Wang Xiaofei, Li Fudong. Development of abroad airborne IR counter measure technology[J]. Tactical Missile Technology, 2011(1): 122-126.

[18] Overton G. IR countermeasures aim for safer flights[J]. Laser Focus World, 2011, 47(8): 35-43.

[19] 张洁. 美军通用红外对抗系统技术的发展[J]. 光电技术应用, 2013, 28(1): 7-11.

    Zhang Jie. Development of US military CIRCM system technology[J]. Electro-Optic Technology Application, 2013, 28(1): 7-11.

[20] Suite of Infrared Countermeasures[SIIRCM][R/OL]. [2015-12-20] http://www.globalsecurity.org/military/systems/aircraft/systems/siircm.htm.

[21] Islam M N. All-fiber designs extend supercontinuum sources into the mid-IR region[J]. Laser Focus World, 2012, 48(3): 56-60.

[22] 钟鸣, 任钢. 3~5 μm中红外激光对抗武器系统[J]. 四川兵工学报, 2007, 28(1): 3-6.

    Zhong Ming, Ren Gang. 3~5 μm medium infrared laser countermeasure weapon system[J]. Sichuan Ordnance Journal, 2007, 28(1): 3-6.

[23] 朱辰, 李尧, 王雄飞, 等. 超连续谱光源对CMOS图像传感器的干扰实验研究[J]. 激光与红外, 2014, 44(4): 374-377.

    Zhu Chen, Li Yao, Wang Xiongfei, et al.. Experiment study of interference of super-continuum light source on CMOS photodetectors[J]. Laser & Infrared, 2014, 44(4): 374-377.

[24] Omni Sciences, Inc. Award List[R/OL]. [2015-12-20] http://www.sbir.gov/sbirsearch/detail/255463.

[25] Moselund P, Petersen C, Leick L, et al.. Highly stable, all-fiber, high power ZBLAN supercontinuum source reaching 4.75 μm used for nanosecond mid-IR spectroscopy[C]. Advanced Solid-State Lasers Congress, Paris, 2013: JTh5A.9.

[26] Omni Sciences, Inc.[Z/OL]. [2015-12-20] http://sbirsource.com/sbir/firms/4139-omni-sciences-inc.

[27] Supercontinuum fiber laser for multi-spectral energy propagation[Z/OL]. [2015-12-20] http://www.sbir.gov/sbirsearch/detail/387923.

[28] High power, broad band photonic crystal fiber lasers[Z/OL]. [2015-12-20] http://www.sbir.gov/sbirsearch/detail/381863.

[29] Supercontinuum laser for multi-spectral energy propagation[Z/OL]. [2015-12-20] http://www.sbir.gov/sbirsearch/detail/384931.

[30] High power mid-IR laser system for ESASE[Z/OL]. [2015-12-20] http://www.sbir.gov/sbirsearch/detail/410311.

[31] 中国新闻网. 美陆军接收机载通用红外对抗导弹防御系统[N/OL]. (2013-02-05) [2015-12-20] http://www.chinanews.com/mil/2013/02-05/4548133.shtml.

[32] 叶文, 叶本志, 宦克为, 等. 机载激光反导武器的发展[J]. 激光与红外, 2011, 41(5): 481-486.

    Ye Wen, Ye Benzhi, Huan Kewei, et al.. Development of the airborne laser anti-missile weapon[J]. Laser & Infrared, 2011, 41(5): 481-486.

[33] 柴路, 胡明列, 方晓惠, 等. 光子晶体光纤飞秒激光技术研究进展[J]. 中国激光, 2013, 40(1): 0101001.

    Chai Lu, Hu Minglie, Fang Xiaohui, et al.. Advances in femtosecond laser technologies with photonic crystal fibers[J]. Chinese J Lasers, 2013, 40(1): 0101001.

[34] 陈海寰, 陈子伦, 周旋风, 等. 拉锥光纤产生超连续谱的研究进展[J]. 激光与光电子学进展, 2012, 49(7): 070004.

    Chen Haihuan, Chen Zilun, Zhou Xuanfeng, et al.. Research progress on supercontinuum generation in fiber tapers[J]. Laser & Optoelectronics Progress, 2012, 49(7): 070004.

[35] 陈胜平, 王建华, 谌鸿伟, 等. 35.6 W高功率高效率全光纤超连续谱光源[J]. 中国激光, 2010, 37(12): 3018.

[36] 房鸿, 马瑞龙, 韦会峰. 光子晶体与单模光纤熔接对超连续谱展宽的影响[J]. 西安工业大学学报, 2012, 32(3): 187-191.

    Fang Hong, Ma Ruilong, Wei Huifeng. Effect of fiber splicing of photonic crystal fiber and single-mode fiber on supercontinuum generation[J]. Journal of Xi′an Technological University, 2012, 32(3): 187-191.

[37] 葛廷武, 于峰, 张文启, 等. 国产全光纤结构超连续谱激光输出突破8 W[J]. 中国激光, 2011, 38(2): 0202003-6.

[38] 宋锐, 陈胜平, 侯静, 等. 70 W全光纤超连续谱光源[J]. 强激光与粒子束, 2011, 23(3): 569-570.

    Song Rui, Chen Shengping, Hou Jing, et al.. All-fiber 70 W supercontinuum[J]. High Power Laser and Particle Beams, 2011, 23(3): 569-570.

[39] 宋锐, 侯静, 陈胜平, 等. 177.6 W全光纤超连续谱光源[J]. 物理学报, 2012, 61(5): 546-549.

    Song Rui, Hou Jing, Chen Shengping, et al.. All-fiber 177.6 W supercontinuum source[J]. Acta Physica Sinica, 2012, 61(5): 546-549.

[40] 宋晏蓉, 朱建银, 张晓. 不同零色散点光子晶体光纤的超连续谱产生[J]. 量子光学学报, 2011, 17(3): 237-241.

    Song Yanrong, Zhu Jianyin, Zhang Xiao, et al.. The influence of zero-dispersion point of photonic crystal fiber on supercontinuum generation[J]. Acta Sinica Quantum Optica, 2011, 17(3): 237-241.

[41] 奚小明, 陈子伦, 孙桂林, 等. 双波长抽运拉锥光子晶体光纤产生超连续谱研究[J]. 光学学报, 2011, 31(2): 0206001.

    Xi Xiaoming, Chen Zilun, Sun Guilin, et al.. Dual-wavelength pumped supercontinuum generation in tapered photonic crystal fiber[J]. Acta Optica Sinica, 2011, 31(2): 0206001.

[42] 张晓娟. 不同色散区光子晶体光纤中超连续谱的产生[J]. 渭南师范学院学报, 2011, 26(2): 14-20.

    Zhang Xiaojuan. Supercontinuum generation in photonic crystal fibers with different dispersion[J]. Journal of Weinan Teachers University, 2011, 26(2): 14-20.

[43] 赵卫, 胡晓鸿, 王屹山, 等. 高功率全光纤超连续谱激光技术进展[J]. 中国激光, 2011, 38(11): 1107002-6.

[44] Swiderski J, Michalska M, Maze G. Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system[J]. Optics Express, 2013, 21(7): 7851-7857.

[45] Guo C Y, Ruan S C, Yan P G, et al.. Flat supercontinuum generation in cascaded fibers pumped by a continuous wave laser[J]. Optics Express, 2010, 18(11): 11046-11051.

[46] Hu X H, Zhang W, Yang Z, et al.. High average power, strictly all-fiber supercontinuum source with good beam quality[J]. Optics Letters, 2011, 36(14): 2659-2661.

[47] 张斌, 杨未强, 侯静, 等. 国内首次实现1.9~4.3 μm全光纤中红外超连续谱光源[J]. 中国激光, 2012, 39(12): 1202001-4.

[48] 孙畅, 葛廷武, 李思源, 等. 67.9 W高功率全光纤白光超连续谱激光器[J]. 强激光与粒子束, 2014, 26(12): 120101.

    Sun Chang, Ge Tingwu, Li Siyuan, et al.. 67.9 W high power all-fiber white-light supercontinuum laser source[J]. High Power Laser and Particle Beams, 2014, 26(12): 120101.

[49] 李旻, 霍力, 王东, 等. 基于双波长相干超短脉冲光源的超连续谱产生[J]. 光学学报, 2015, 35(4): 0406001.

    Li Min, Huo Li, Wang Dong, et al.. Supercontinuum generation based on dual-wavelength coherent ultrashort pulses[J]. Acta Optica Sinica, 2015, 35(4): 0406001.

[50] Avdokhin A V, Popov S V, Taylor J R. Continuous-wave, high-power, in Raman continuum generation holey fibers[J]. Optics Letters, 2003, 28(15): 1353-1355.

[51] Travers J C, Popov S V, Taylor J R, et al.. Extended bandwidth CW-pumped infrared supercontinuum generation in low water-loss PCF[C]. Conference on Lasers & Electro-Optics, 2005, 3: 2325-2327.

[52] Gattass R R, Shaw L B, Sanghera J S. Microchip laser mid-infrared supercontinuum laser source based on an As2Se3 fiber[J]. Optics Letters, 2014, 39(12): 3418-3420.

[53] Travers J C, Rulkov A B, Cumberland B A, et al.. Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser[J]. Optics Express, 2008, 16(19): 14435-14447.

[54] Kelleher E J R, Erkintalo M, Travers J C. Fission of solitons in continuous-wave supercontinuum[J]. Optics Letters, 2012, 37(24): 5217-5219.

[55] Chapman B, Popov S V, Taylor R. Continuous wave supercontinuum generation through pumping in the normal dispersion region for spectral flatness[J]. IEEE Photonics Technology Letters, 2012, 24(15): 1325-1327.

[56] Faco M, Carvalho M I, Fernandes G M, et al.. Continuous wave supercontinuum generation pumped in the normal group velocity dispersion regime on a highly nonlinear fiber[J]. Jounal of the Optical Society of America B, 2013, 30(4): 959-966.

[57] Wang Q, Fan Y X, Li Y Q, et al.. Ultrabroadband SCG with quasi-continuous wave nanosecond-long pump pulses in PCF[J]. Chinese Optics Letters, 2011, 9(7): 071405.

[58] 王彦斌. 长脉冲和连续光泵浦光子晶体光纤产生超连续谱的相关研究[D]. 长沙: 国防科学技术大学, 2011.

    Wang Yanbin. The study on supercontinuum generation by pumping photonic crystal fibers with long-pulses and continuous-wave[D]. Changsha: National University of Defense Technology, 2011.

[59] Cheung K K Y, Zhang C, Zhou Y, et al.. Manipulating supercontinuum generation by minute continuous wave[J]. Optics Letters, 2011, 36(2): 160-162.

[60] Guo C Y, Ruan S C, Yan P G, et al.. A low-cost CW-pumped supercontinuum source[J]. Laser Physics, 2013, 23(5): 1382-1391.

[61] 郭春雨, 林怀钦, 阮双琛, 等. 连续波抽运的高功率全光纤化超连续谱光源[J]. 深圳大学学报(理工版), 2013, 30(4): 423-427.

    Guo Chunyu, Lin Huaiqin, Ruan Shuangchen, et al.. High-power all-fiber CW-pumped supercontinuum source[J]. Journal of Shenzhen University (Science & Engineering), 2013, 30(4): 423-427.

[62] 刘昆, 师红星, 刘江, 等. 基于类噪声脉冲抽运的高功率全光纤中红外超连续谱光源[J]. 中国激光, 2015, 42(9): 0902003.

    Liu Kun, Shi Hongxing, Liu Jiang, et al.. High-power all-fiber mid-infrared supercontinuum generation pumped by noise-like pulses[J]. Chinese J Lasers, 2015, 42(9): 0902003.

[63] Chen H W, Chen S P, Wang J H, et al.. 35 W high power all fiber supercontinuum generation in PCF with picosecond MOPA laser[J]. Optics Communications, 2011, 284(23): 5484-5487.

[64] Michaille L, Taylor D M, Bennett C R, et al.. Characteristics of a Q-switched multicore photonic crystal fiber laser with a very large mode field area[J]. Optics Letters, 2008, 33(1): 71-73.

[65] Fang X H, Hu M L, Liu B W, et al.. Generation of 150 MW, 110 fs pulses by phase-locked amplification in multicore photonic crystal fiber[J]. Optics Letters, 2010, 35(14): 2326-2328.

[66] Fang X H, Hu M L, Xie C, et al.. High pulse energy mode-locked multicore photonic crystal fiber laser[J]. Optics Letters, 2011, 36(6): 1005-1007.

[67] Fang X H, Hu M L, Huang L L, et al.. Multiwatt octave-spanning supercontinuum generation in multicore photonic-crystal fiber[J]. Optics Letters, 2012, 37(12): 2292-2294.

[68] 谌鸿伟, 韦会峰, 刘通, 等. 七芯光子晶体光纤中百瓦量级超连续谱的产生[J]. 物理学报, 2014, 63(4): 044205.

    Chen Hongwei, Wei Huifeng, Liu Tong, et al.. Hundred-watt-level supercontinuum generation in seven-core photonic crystal fiber[J]. Acta Physica Sinica, 2014, 63(4): 044205.

[69] Fuerbach A, Steinvurzel P, Bolger J A, et al.. Nonlinear propagation effects in antiresonant high-index inclusion photonic crystal fibers[J]. Optics Letters, 2005, 30(8): 830-832.

[70] Pureur V, Dudley J M. Nonlinear spectral broadening of femtosecond pulses in solid-core photonic bandgap fibers[J]. Optics Letters, 2010, 35(16): 2813-2815.

[71] Pureur V, Dudley J M. Design of solid core photonic bandgap fibers for visible supercontinuum generation[J]. Optics Communications, 2011, 284(6): 1661-1668.

[72] 景琦. 光子晶体光纤非线性效应及偏振解复用技术的理论与实验研究[D]. 北京: 北京邮电大学, 2012.

    Jing Qi. Theoretical and experimental researches on photonic crystal fibers nonlinearity and polarization demultiplexing technologies[D]. Beijing: Beijing University of Posts and Telecommunications, 2012.

[73] 张斌, 侯静, 姜宗福. 材料色散对全固态带隙光纤带内色散的影响[J]. 国防科技大学学报, 2011, 33(2): 5-8.

    Zhang Bin, Hou Jing, Jiang Zongfu. Effects of material dispersion on dispersion in bandgaps of all-solid photonic bandgap fibers[J]. Journal of National University of Defense Technology, 2011, 33(2): 5-8.

[74] 张斌, 侯静, 姜宗福. 全固态光子带隙光纤中实现光谱可控的大功率超连续谱输出[J]. 光学学报, 2010, 30(9): 2513-2518.

    Zhang Bin, Hou Jing, Jiang Zongfu. Controllable high-power supercontinuum generation in all-solid photonic bandgap fibers[J]. Acta Optica Sinica, 2010, 30(9): 2513-2518.

[75] Zhou H, Chen Z L, Li J, et al.. The effect of PCF combiners on the whole loss under different lengths of transition zone[C]. SPIE, 2011, 8191: 81911Y.

[76] 梁冬明. 超连续谱合束器研究[D]. 长沙: 国防科学技术大学, 2009.

    Liang Dongming. Optical fiber combiner for supercontinuum[D]. Changsha: National University of Defense Technology, 2009.

[77] 张斌. 光谱可控的可见光超连续谱与中红外超连续谱产生研究[D]. 长沙: 国防科学技术大学, 2012.

    Zhang Bin. Study on controllable visible supercontinuum generation and mid-IR supercontinuum generation[D]. Changsha: National University of Defense Technology, 2012

[78] 高静, 葛廷武, 李伍一, 等. 吉赫兹高功率全光纤超连续谱激光光源[J]. 中国激光, 2014, 41(11): 1102004-7.

[79] Bethge J, Husakou A, Mitschke F, et al.. Two-octave supercontinuum generation in a water-filled photonic crystal fiber[J]. Optics Express, 2010, 18(6): 6230-6240.

[80] Vieweg M, Gissibl T, Pricking S, et al.. Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers[J]. Optics Express, 2010, 18(24): 25232-25240.

[81] Churin D, Nguyen T N, Kieu K, et al.. Mid-IR supercontinuum generation in an integrated liquid-core optical fiber filled with CS2[J]. Optical Materials Express, 2013, 3(9): 1358-1364.

[82] Maji P S, Chaudhuri P R. A new design for all-normal near zero dispersion photonic crystal fiber with selective liquid infiltration for broadband supercontinuum generation at 1.55 μm[J]. Journal of Photonics, 2014, 2014: 728592.

[83] Ebnali-Heidari M, Saghaei H, Koohi-Kamali F, et al.. Proposal for supercontinuum generation by optofluidic infiltrated photonic crystal fibers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 582-589.

[84] Vieweg M, Gissibl T, Giessen H. Photonic-crystal fibers are selectively filled with nonlinear liquids[J]. Laser Focus World, 2011, 47(6): 53-55.

[85] Gissibl T, Vieweg M, Vogel M M, et al.. Preparation and characterization of a large mode area liquid-filled photonic crystal fiber: Transition from isolated to coupled spatial modes[J]. Applied Physics B, 2012, 106(3): 521-527.

[86] Kedenburg S, Vieweg M, Gissibl T, et al.. Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region[J]. Optical Materials Express, 2012, 2(11): 1588-1611.

[87] Gerosa R M, Bozolan A, de Matos C J S, et al.. Novel sealing technique for practical liquid-core photonic crystal fibers[J]. IEEE Photonics Technology Letters, 2012, 24(3): 191-193.

梁田, 冯小妹. 利用光纤产生平坦超连续谱的研究进展[J]. 激光与光电子学进展, 2016, 53(6): 060002. Liang Tian, Feng Xiaomei. Research Progress Toward Flat Supercontinuum Generation in Fibers[J]. Laser & Optoelectronics Progress, 2016, 53(6): 060002.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!