红外与激光工程, 2019, 48 (1): 0102001, 网络出版: 2019-04-02   

室温微测辐射热计太赫兹探测阵列技术研究进展(特邀)

Research development about room temperature terahertz detector array technology with microbolometer structure(invited)
作者单位
电子科技大学 光电科学与工程学院 电子薄膜与集成器件国家重点实验室, 四川 成都 610054
摘要
在室温太赫兹探测技术领域中, 热敏微桥结构的太赫兹探测器具有探测波段宽、阵列规模大、集成度高、实时成像等显著特点。文中对室温太赫兹探测技术、基于热敏材料的太赫兹探测技术国内外发展现状进行了综述, 分析了基于氧化钒薄膜微桥结构的非制冷长波红外焦平面探测技术, 存在着太赫兹波低吸收探测性能弱的不足, 针对太赫兹波探测进行优化设计, 同时介绍了电子科技大学在太赫兹探测阵列吸收结构方面的部分研究工作。
Abstract
Terahertz(THz) detector with thermal sensitive microbolometer structure indicates many prominent features, such as wide band detecting region, large array pixels, high integrated device, real-time imaging, comparing with some other room-temperature THz technologies. Microbolometer structure using VOx thin film as sensitive material has been successfully fabricated uncooled infrared focal plane array detector, but unsuitable for THz detection for very low THz wave absorption ratio. So some special design should be presented in the microbolometer structure to achieve high performance THz detector. Room-temperature THz technologies and development of microbolometer type THz detector array were introduced in this article briefly, and also the research about THz absorption material or structure in University of Electronic Science and Technology of China was presented in the paper.
参考文献

[1] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1: 97-105,

[2] Tassin P, Koschny T, Soukoulis C M. Graphene for terahertz applications [J]. Science, 2013, 341: 620-621.

[3] http://www. technologyreview. com/Infotech/13438/

[4] http://news.xinhuanet.com/world/2005-01/09/content_ 2436145.htm

[5] Kohler R, Tredicucci A, Beltram F, et al. Terahertz semiconductor-heterostructure laser [J]. Nature, 2002, 417: 156-159.

[6] Vitiello M S, Consolino L, Bartalini S, et al. Quantum-limited frequency fluctuations in a terahertz laser [J]. Nature Photonics, 2012, 6: 525-528.

[7] Cai X, Sushkov A B, Suess R. J, et al. Sensitive room-temperature terahertz detection via the photothermoelectric effect in grapheme [J]. Nature Nanotechnology, 2014, 9: 814-819.

[8] Sizov F, Rogalski A. THz detectors[J]. Progress in Quantum Electronics, 2010, 34: 278-347.

[9] Ignacio I, Carlos D, Jean-Francois M, et al. Operation of GaN planar nanodiodes as THz detectors and mixers [J]. IEEE Transactions on Terahertz Science and Technology, 2014, 4: 670-677.

[10] Vicarelli L, Vitiello M S, Coquillat D, et al. Graphene field-effect transistors as room-temperature terahertz detectors [J]. Nature Materials, 2012, 11: 865-871.

[11] Chen S L, Chang Y C, Zhang C, et al. Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite [J]. Nature Photonics, 2014, 8: 537-542.

[12] Marinchio H, Chusseau L, Torres J, et al. Room-temperature terahertz mixer based on the simultaneous electronic and optical excitations of plasma waves in a field effect transistor [J]. Applied Physics Letters, 2010, 96: 013502.

[13] Knap W, Rumyantsev S, Vitiello M S, et al. Nanometer size field effect transistors for terahertz detectors [J]. Nanotechnology, 2013, 24: 214002.

[14] Sherry H, Grzyb J, Zhao Y, et al. A 1k pixel CMOS camera chip for 25 fps real-time terahertz imaging applications [C]//ISSCC, 2012: 252-254.

[15] Han R, Zhang Y, Kim Y, et al. 280 GHz and 860 GHz image sensors using Schottky-barrier diodes in 0.13 μm digital CMOS [C]//ISSCC, 2012: 254-256.

[16] Jiang Y, Jin B, Wu W, et al. Terahertz detectors based on superconducting hot electron bolometers [J]. Science China Information Sciences, 2012, 55: 64-71.

[17] Xiao-Li Y, O′Brien J. A proposal for optical terahertz detection with externally biased nanopore superlattices [J]. Applied Physics Letters, 2014, 104: 031104.

[18] Huhn A K, Spickermann G, Ihring A, et al. Uncooled antenna-coupled terahertz detectors with 22 μs response time based on BiSb/Sb thermocouples[J]. Applied Physics Letters, 2013, 102: 121102.

[19] Romano M, Chulkov A, Sommier A, et al. Broadband sub-terahertz camera based on photothermal conversion and IR thermography[J]. Journal of Infrared Millimeter and Terahertz Waves, 2016, 37(5): 448-461.

[20] Escorcia I, Grant J, Gough J, et al. Uncooled CMOS terahertz imager using a metamaterial absorber and pn diode [J]. Optics Letters, 2016, 41(14): 3261-3264.

[21] Wen Y, Jia D, Wei Ma, et al. Photomechanical meta-molecule array for real-time terahertz imaging [J]. Microsystems & Nanoengineering, 2017, 3: 17071.

[22] Lee A W, Hu Q. Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array [J]. Optics Letter, 2005, 30(19): 2563.

[23] Sizov F. Terahertz radiation detectors: the state of the art[J]. Semiconductor Science and Technology, 2018, 33: 123001.

[24] Aseev A L, Esaev D G, Dem′yanenko M A, et al. Terahertz imaging and radiocopy with 160×120 microbolometer 90 FPS camera [C]//Proceedings of FEL, 2007: 83-85.

[25] Coppinger M, Sustersic N A, Kolodzey J, et al. Sensitivity of a vanadium oxide uncooled microbolometer array for terahertz imaging [J]. Optical Engineering, 2011, 50(5): 053206.

[26] Oda N, Komiyama S, Hosako I. Bolometer-type THz-wave detector: USA, US200810237469 [P]. 2008-08-02.

[27] Oda N, Yoneyama H, Sasaki T, et al. Detection of terahertz radiation from quantum cascade laser using vanadium oxide microbolometer focal plane arrays [C]//SPIE, 2008, 6940: 69402Y.

[28] Hosako I, Sekine N, Oda N, et al. A real-time terahertz imaging system consisting of terahertz quantum cascade laser and uncooled microbolometer array detector [C]//SPIE, 2010, 8023: 80230A.

[29] Oda N, Lee A W, Ishi T, et al. Proposal for real-time terahertz imaging system, with palm-size terahertz camera and compact quantum cascade laser[C]//SPIE, 2012, 8363: 83630A.

[30] Oda N, Ishi T, Kurashina S, et al. Palm-size and real-time terahertz imager, and its application to development of terahertz sources [C]//SPIE, 2013, 8716: 871603.

[31] Oda N, Okubo S, Sudou T, et al. Image reconstruction method for non-synchronous THz signals [C]//SPIE, 2014, 9102: 910202.

[32] Nemoto N, Kanda N, Imai R, et al. High-sensitivity and broadband, real-time terahertz camera incorporating a micro-bolometer array with resonant cavity structure [J]. IEEE Transactions on Terahertz Science and Technology, 2016, 6(2): 175-182.

[33] Pope T, Doucet M, Dupont F, et al. Uncooled detector, optics, and camera development for THz imaging [C]//SPIE, 2009, 7311: 73110L.

[34] Oulachgar H, Marchese L, Alain C, et al. Development of MEMS microbolometer detector for THz applications [C]//IEEE Conference: Infrared Millimeter and Terahertz Waves, 2010: 1-2.

[35] Oulachgar H, Bolduc M, Tremblay M, et al. Simulation and fabrication of large area uncooled microbolometers for Terahertz wave detection[C]//IEEE Conference: Infrared Millimeter and Terahertz Waves, 2011: 1-2.

[36] Bergeron A, Marchese L, Savard 魪, et al. Resolution capability comparison of infrared and terahertz imagers [C]//SPIE, 2011, 8188: 81880I.

[37] Blanchard N, Marchese L, Martel A, et al. Catadioptric optics for high-resolution terahertz imager[C]//SPIE, 2012, 8363: 83630B.

[38] Marchese L, Terroux M, Genereux F, et al. Review of the characteristics of 384×288 pixel THz camera for seethrough imaging [C]//SPIE, 2013, 8900: 890009.

[39] Oulachgar H, Mauskopf P, Bolduc M, et al. Design and microfabrication of frequency selective uncooled microbolometer focal plane array for terahertz imaging [C]//IEEE Conference: Infrared Millimeter and Terahertz Waves, 2013: 1-2.

[40] Marchese L, Terroux M, Dufour D, et al. Case study of concealed weapons detection at stand-off distances using a compact, large field-of-view THz camera[C]//SPIE, 2014, 9083: 90832G.

[41] Marchese L E, Terroux M, Doucet M, et al. Reflection imaging in the millimeter-wave rage using a video-rate terahertz camera [C]//SPIE, 2016, 9836: 98362S.

[42] Marchese L, Doucet M, Blanchard N, et al. Overcoming the challenges of active THz/MM-wave imaging: an optics perspective [C]//SPIE, 2018, 10639: 106392B.

[43] Simoens F, Durand T, Meilhan J, et al. Terahertz imaging with a quantum cascade laser and amorphous-silicon microbolometer array[C]//SPIE, 2009, 7485: 74850M.

[44] Nguyen D, Simoens F, Ouvrier-Buffet J, et al. Broadband THz uncooled antenna-coupled microbolometer array-electromagnetic design, simulations and measurements [J]. IEEE Transactions on Terahertz Science and Technology, 2012, 2(3): 299-305.

[45] Simoens F, Meilhan J, Gidon S, et al. Antenna-coupled microbolometer based uncooled 2D array and camera for 2D real-time terahertz imaging [C]//SPIE, 2013, 8846: 88460O.

[46] Gou J, Jiang Y, Wang J. Terahertz absorption characteristics of NiCr film in a microbolometer focal plane array [J]. Micro and Nano Letters, 2014, 9(3): 215-217.

[47] Gou J, Wang J, Li W, et al. Terahertz absorption characteristics of NiCr film and enhanced absorption by reactive ion etching in a microbolometer focal plane array [J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2013, 34: 431-436.

[48] Gou J, Wang J, Li W, et al. Study on optical properties of nanostructured NiCr filmprepared by magnetron sputtering and RIE for terahertz applications [J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2015, 36(9): 838-844.

[49] Gou J, Zhang T, Wang J, et al. Spiral antenna-coupled microbridge structures for THz application[J]. Nanoscale Research Letters, 2017, 12: 91.

[50] Gou J, Niu Q, Liang K, et al. Frequency modulation and absorption improvement of THz micro-bolometer with micro-bridge structure by novel spiral-type antennas [J]. Nanoscale Research Letters, 2018, 13: 74.

[51] Wang J, Li W, Gou J, et al. Fabrication and parameters calculation of room temperature terahertz detector with micro-bridge structure [J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2015, 36: 49-59.

[52] Gou J, Wang J, Zheng X, et al. Detection of terahertz radiation from 2.52 THz CO2 laser using a 320×240 vanadium oxide microbolometer focal plane array [J]. RSC Advances, 2015, 5(102): 84252-84256.

王军, 蒋亚东. 室温微测辐射热计太赫兹探测阵列技术研究进展(特邀)[J]. 红外与激光工程, 2019, 48(1): 0102001. Wang Jun, Jiang Yadong. Research development about room temperature terahertz detector array technology with microbolometer structure(invited)[J]. Infrared and Laser Engineering, 2019, 48(1): 0102001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!