Frontiers of Optoelectronics, 2018, 11 (4): 407–412, 网络出版: 2019-01-10  

Proposal for CEP measurement based on terahertz air photonics

Proposal for CEP measurement based on terahertz air photonics
作者单位
Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic information, Huazhong University of Science and Technology, Wuhan 430074, China
摘要
Abstract
Single-shot carrier envelope phase (CEP) measurement is a challenge in the research field of ultrafast optics. We theoretically investigate how an intense terahertz pulse modulates second harmonic emission (SH) from a gas plasma induced by a few-cycle laser pulse (FCL). Results show that the modulation quantity of SH intensity has a cosinoidal dependence on the CEP of FCL pulses, based on which we propose a low energy, alloptical method for single-shot CEP measurements via using a known intense terahertz pulse. Moreover, we propose an experimental realization.
参考文献

[1] Hamster H, Sullivan A, Gordon S, White W, Falcone R W. Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Physical Review Letters, 1993, 71(17): 2725–2728

[2] Cook D J, Hochstrasser R M. Intense terahertz pulses by four-wave rectification in air. Optics Letters, 2000, 25(16): 1210–1212

[3] Dai J, Xie X, Zhang X C. Detection of broadband terahertz waves with a laser-induced plasma in gases. Physical Review Letters, 2006, 97(10): 103903

[4] Roskos H G, Thomson M D, Kreβ M, Loffler T. Broadband THz emission from gas plasmas induced by femtosecond optical pulses: from fundamentals to applications. Laser & Photonics Reviews, 2007, 1(4): 349–368

[5] Kim K Y, Glownia J H, Taylor A J, Rodriguez G. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Optics Express, 2007, 15(8): 4577–4584

[6] Karpowicz N, Dai J, Lu X, Chen Y, Yamaguchi M, Zhao H, Zhang X C, Zhang L, Zhang C, Price-Gallagher M, Fletcher C, Mamer O, Lesimple A, Johnson K. Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”. Applied Physics Letters, 2008, 92(1): 011131

[7] Kim K Y. Generation of coherent terahertz radiation in ultrafast laser-gas interactions. Physics of Plasmas, 2009, 16(5): 056706

[8] Dai J, Karpowicz N, Zhang X C. Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma. Physical Review Letters, 2009, 103(2): 023001

[9] Wang T J, Marceau C, Chen Y, Yuan S, Theberge F, Chateauneuf M, Dubois J, Chin S L. Terahertz emission from a dc-biased twocolor femtosecond laser-induced filament in air. Applied Physics Letters, 2010, 96(21): 211113

[10] Babushkin I, Kuehn W, Kohler C, Skupin S, Berge L, Reimann K, Woerner M, Herrmann J, Elsaesser T. Ultrafast spatiotemporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases. Physical Review Letters, 2010, 105(5): 053903

[11] Dai J, Liu J, Zhang X C. Terahertz wave air photonics: terahertz wave generation and detection with laser-induced gas plasma. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(1): 183–190

[12] Clough B, Dai J, Zhang X C. Laser air photonics: beyond the terahertz gap. Materials Today, 2012, 15(1–2): 50–58

[13] Matsubara E, Nagai M, Ashida M. Ultrabroadband coherent electric field from far infrared to 200 THz using air plasma induced by 10 fs pulses. Applied Physics Letters, 2012, 101(1): 011105

[14] Wang H, Wang K, Liu J, Dai H, Yang Z. Theoretical research on terahertz air-breakdown coherent detection with the transient photocurrent model. Optics Express, 2012, 20(17): 19264–19270

[15] Liu J, Wang H, Wang K, Yang Z, Wang S. Coherent detection of terahertz pulses via gas plasma induced by few-cycle laser pulses with fixed carrier envelope phase. Optics Letters, 2013, 38(7): 1104–1106

[16] Oh T I, Yoo Y J, You Y S, Kim K Y. Generation of strong terahertz fields exceeding 8 MV/cm at 1 kHz and real-time beam profiling. Applied Physics Letters, 2014, 105(4): 041103

[17] Hafez H A, Chai X, Ibrahim A, Mondal S, Ferachou D, Ropagnol X, Ozaki T. Intense terahertz radiation and their applications. Journal of Optics, 2016, 18(9): 093004

[18] Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, Kleineberg U. Single-cycle nonlinear optics. Science, 2008, 320(5883): 1614–1617

[19] Krausz F, Ivanov M. Attosecond physics. Reviews of Modern Physics, 2009, 81(1): 163–234

[20] Takahashi E J, Lan P, Mücke O D, Nabekawa Y, Midorikawa K. Nonlinear attosecond metrology by intense isolated attosecond pulses. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(5): 8800112

[21] Yu T J, Nam C H. Carrier-envelope phase stabilization of femtosecond lasers by the direct locking method. Progress in Quantum Electronics, 2012, 36(4 – 6): 541–565

[22] Roos P A, Li X, Smith R P, Pipis J A, Fortier T M, Cundiff S T. Solid-state carrier-envelope phase stabilization via quantum interference control of injected photocurrents. Optics Letters, 2005, 30 (7): 735–737

[23] Osvay K, Gorbe M, Grebing C, Steinmeyer G. Bandwidthindependent linear method for detection of the carrier-envelope offset phase. Optics Letters, 2007, 32(21): 3095–3097

[24] Wittmann T, Horvath B, Helml W, Schatzel MG, Gu X, Cavalieri A L, Paulus G G, Kienberger R. Single-shot carrier–envelope phase measurement of few-cycle laser pulses. Nature Physics, 2009, 5(5): 357–362

[25] Vernaleken A, Schmidt B,Wolferstetter M, Hansch TW, Holzwarth R, Hommelhoff P. Carrier-envelope frequency stabilization of a Ti: sapphire oscillator using different pump lasers. Optics Express, 2012, 20(16): 18387–18396

[26] Piglosiewicz B, Schmidt S, Park D J, Vogelsang J, Groβ P, Manzoni C, Farinello P, Cerullo G, Lienau C. Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures. Nature Photonics, 2014, 8(1): 37–42

, , , , . Proposal for CEP measurement based on terahertz air photonics[J]. Frontiers of Optoelectronics, 2018, 11(4): 407–412. Kejia WANG, Xinyang GU, Jinsong LIU, Zhengang YANG, Shenglie WANG. Proposal for CEP measurement based on terahertz air photonics[J]. Frontiers of Optoelectronics, 2018, 11(4): 407–412.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!