Photonics Research, 2015, 3 (5): 05000B28, Published Online: Jan. 6, 2016  

Lowering the energy consumption in silicon photonic devices and systems [Invited] Download: 935次

Author Affiliations
State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
Abstract
We review current silicon photonic devices and their performance in connection with energy consumption. Four critical issues are identified to lower energy consumption in devices and systems: reducing the influence of the thermo-optic effect, increasing the wall-plug efficiency of lasers on silicon, optimizing energy performance of modulators, and enhancing the sensitivity of photodetectors. Major conclusions are (1) Mach–Zehnder interferometer-based devices can achieve athermal performance without any extra energy consumption while microrings do not have an efficient passive athermal solution; (2) while direct bonded III–V-based Si lasers can meet system power requirement for now, hetero-epitaxial grown III–V quantum dot lasers are competitive and may be a better option for the future; (3) resonant modulators, especially coupling modulators, are promising for low-energy consumption operation even when the power to stabilize their operation is included; (4) benefiting from high sensitivity and low cost, Ge/Si avalanche photodiode is the most promising photodetector and can be used to effectively reduce the optical link power budget. These analyses and solutions will contribute to further lowering energy consumption to meet aggressive energy demands in future systems.
References

[1] D. A. B. Miller, “Device requirement for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185(2009).

[2] P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17, 22484– 22490 (2009).

[3] G. P. Conservation, “ITU-T G-Series recommendationssupplement 45 (G. sup45),” ITU-T, May (2009).

[4] B. Skubic and D. Hood, “Evaluation of ONU power saving modes for gigabit-capable passive optical networks,” IEEE Network 25, 20–24 (2011).

[5] L. Valcarenghi, P. G. Raponi, P. Castoldi, D. R. Campelo, S. Wong, S. Yen, L. G. Kazovsky, and S. Yamashita, “Energy efficiency in passive optical networks: where, when, and how ” IEEE Network 26, 61–68 (2012).

[6] J. Baliga, R. Ayre, K. Hinton, W. V. Sorin, and R. S. Tucker, “Energy consumption in optical IP networks,” J. Lightwave Technol. 27, 2391–2403 (2009).

[7] J. W. Goodman, F. J. Leonberger, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).

[8] C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26, 58–66 (2006).

[9] Z. Zhou, X. Wang, H. Yi, Z. Tu, W. Tan, Q. Long, M. Yin, and Y. Huang, “Silicon photonics for advanced optical communication systems,” Opt. Eng. 52, 45007 (2013).

[10] Z. Zhou, Z. Tu, T. Li, and X. Wang, “Silicon photonics for advanced optical interconnections,” J. Lightwave Technol. 33, 928–933 (2015).

[11] F. G. Della Corte, M. Esposito Montefusco, L. Moretti, I. Rendina, and G. Cocorullo, “Temperature dependence analysis of the thermo-optic effect in silicon by single and double oscillator models,” J. Appl. Phys. 88, 7115 (2000).

[12] K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3, 269–281 (2014).

[13] R. Ho, P. Amberg, E. Chang, P. Koka, J. Lexau, G. Li, F. Y. Liu, H. Schwetman, I. Shubin, H. D. Thacker, X. Zheng, J. E. Cunningham, and A. V. Krishnamoorthy, “Silicon photonic interconnects for large-scale computer systems,” IEEE Micro 33, 68–78 (2013).

[14] H. X. Yi, T. T. Li, J. L. Zhang, X. J. Wang, and Z. Zhou, “Temperature-independent broadband silicon modulator,” Opt. Commun. 340, 107–109 (2015).

[15] D. W. Kim, A. Barkai, R. Jones, N. Elek, H. Nguyen, and A. Liu, “Silicon-on-insulator eight-channel optical multiplexer based on a cascade of asymmetric Mach-Zehnder interferometers,” Opt. Lett. 33, 530–532 (2008).

[16] M. Moooka and U. Teruaki, “Temperature-independent silicon waveguide optical filter,” Opt. Lett. 34, 599–601 (2009).

[17] B. Guha, A. Gondarenko, and M. Lipson, “Minimizing temperature sensitivity of silicon Mach-Zehnder interferometers,” Opt. Express 18, 1879 (2010).

[18] S. Dwivedi, H. D’Heer, and W. Bogaerts, “A compact all-silicon temperature insensitive filter for WDM and bio-sensing applications,” IEEE Photon. Technol. Lett. 25, 2167–2170 (2013).

[19] S. Jeong, D. Shimura, T. Simoyama, T. Horikawa, Y. Tanaka, and K. Morito, “Si-nanowire-based multistage delayed Mach- Zehnder interferometer optical MUX/DeMUX fabricated by an ArF-immersion lithography process on a 300 mm SOI wafer,” Opt. Lett. 39, 3702–3705 (2014).

[20] F. Horst, W. M. J. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, and B. J. Offrein, “Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing,” Opt. Express 21, 11652–11658 (2013).

[21] S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90 nm CMOS integrated nano-photonics technology for 25 Gbps WDM optical communications applications,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2012), pp. 31–33.

[22] L. Z. X. S. Liangjun Lu, “CMOS-compatible temperatureindependent tunable silicon optical lattice filters,” Opt. Express 21, 9447–9456 (2013).

[23] M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, and G. N. Nielson, “Adiabatic thermo-optic Mach-Zehnder switch,” Opt. Lett. 38, 733–735 (2013).

[24] J. Van Campenhout, W. Green, S. Assefa, and Y. A. Vlasov, “Integrated NiSi waveguide heaters for CMOS-compatible silicon thermo-optic devices,” Opt. Lett. 35, 1013–1015 (2010).

[25] V. Raghunathan, W. N. Ye, J. Hu, T. Izuhara, J. Michel, and L. Kimerling, “Athermal operation of silicon waveguides: spectral, second order and footprint dependencies,” Opt. Express 18, 17631–17639 (2010).

[26] B. Guha, B. B. C. Kyotoku, and M. Lipson, “CMOS-compatible athermal silicon microring resonators,” Opt. Express 18, 3487–3493 (2010).

[27] Q. Deng, X. Li, Z. Zhou, and H. Yi, “Athermal scheme based on resonance splitting for silicon-on-insulator microring resonators,” Photon. Res. 2, 71–74 (2014).

[28] Y. Kokubun, N. Funato, and M. Takizawa, “Athermal waveguides for temperature-independent lightwave devices,” IEEE Photon. Technol. Lett. 5, 1297–1300 (1993).

[29] J. Lee, D. Kim, H. Ahn, S. Park, and G. Kim, “Temperature dependence of silicon nanophotonic ring resonator with a polymeric overlayer,” J. Lightwave Technol. 25, 2236–2243 (2007).

[30] W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal high-indexcontrast waveguide design,” IEEE Photon. Technol. Lett. 20, 885–887 (2008).

[31] P. D. W. B. Jie Teng, “Athermal silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17, 14627–14633 (2009).

[32] M. M. Milo Evi, N. G. Emerson, F. Y. Gardes, X. Chen, A. A. D. T. Adikaari, and G. Z. Mashanovich, “Athermal waveguides for optical communication wavelengths,” Opt. Lett. 36, 4659– 4661 (2011).

[33] B. Guha, J. Cardenas, and M. Lipson, “Athermal silicon microring resonators with titanium oxide cladding,” Opt. Express 21, 26557–26563 (2013).

[34] S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express 21, 13958–13968 (2013).

[35] J. Lee, D. Kim, G. Kim, O. Kwon, K. Kim, and G. Kim, “Controlling temperature dependence of silicon waveguide using slot structure,” Opt. Express 16, 1645–1652 (2008).

[36] V. Raghunathan, T. Izuhara, J. Michel, and L. Kimerling, “Stability of polymer-dielectric bi-layers for athermal silicon photonics,” Opt. Express 20, 16059–16066 (2012).

[37] N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4 × 4 hitless silicon router for optical networks-on-chip (NoC),” Opt. Express 16, 15915–15922 (2008).

[38] M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference (CLEO/QELS) (2009), Vols. 1–5, pp. 812–813.

[39] P. Dong, W. Qian, H. Liang, R. Shafiiha, N. N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18, 9852–9858 (2010).

[40] P. Sun and R. M. Reano, “Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides,” Opt. Express 18, 8406–8411 (2010).

[41] P. De Heyn, J. De Coster, P. Verheyen, G. Lepage, M. Pantouvaki, P. Absil, W. Bogaerts, J. Van Campenhout, D. Van Thourhout, P. D. Heyn, S. Member, and J. D. Coster, “Fabrication-tolerant four-channel wavelength-division-multiplexing filter based on collectively tuned Si microrings,” J. Lightwave Technol. 31, 2785–2792 (2013).

[42] S. Jeong, D. Shimura, T. Simoyama, M. Seki, N. Yokoyama, M. Ohtsuka, K. Koshino, T. Horikawa, Y. Tanaka, and K. Morito, “Low-loss, flat-topped and spectrally uniform siliconnanowire- based 5th-order CROW fabricated by ArF-immersion lithography process on a 300-mm SOI wafer,” Opt. Express 21, 30163–30174 (2013).

[43] B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263–2265 (2004).

[44] P. Chen, S. Chen, X. Guan, Y. Shi, and D. Dai, “High-order microring resonators with bent couplers for a box-like filter response,” Opt. Lett. 39, 6304–6307 (2014).

[45] O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12, 5269–5273 (2004).

[46] A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84, 1037–1039 (2004).

[47] J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35, 679–681 (2010).

[48] R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express 20, 11316–11320 (2012).

[49] A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).

[50] J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15, 6744–6749 (2007).

[51] H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).

[52] H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).

[53] H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1, 232–237 (2007).

[54] Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498, 470–474 (2013).

[55] B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70, 1–12 (2004).

[56] T. J. Kippenberg, J. Kalkman, A. Polman, and K. J. Vahala, “Demonstration of an erbium-doped microdisk laser on a silicon chip,” Phys. Rev. A 74, 72–75 (2006).

[57] H. Hsu, C. Cai, and A. M. Armani, “Ultra-low-threshold Er:Yb sol-gel microlaser on silicon,” Opt. Express 17, 23265–23271 (2009).

[58] E. H. Bernhardi, H. A. G. M. van Wolferen, L. Agazzi, M. R. H. Khan, C. G. H. Roeloffzen, K. W rhoff, M. Pollnau, and R. M. de Ridder, “Ultra-narrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3:Er3+ on silicon,” Opt. Lett. 35, 2394–2396 (2010).

[59] Purnawirman, J. Sun, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, E. Shah Hosseini, and M. R. Watts, “C-and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities,” Opt. Lett. 38, 1760–1765 (2013).

[60] M. Belt and D. J. Blumenthal, “Erbium-doped waveguide DBR and DFB laser arrays integrated within an ultra-low-loss Si3N4 platform,” Opt. Express 22, 10655–10660 (2014).

[61] E. S. Hosseini, J. Sun, T. N. Adam, G. Leake, D. D. Coolbaugh, M. R. Watts, A. Baldycheva, and J. D. Bradley, “Erbium-doped laser with multi-segmented silicon nitride structure,” in Optical Fiber Communication Conference, (Optical Society of America, 2014), paper W4E.5.

[62] E. S. Hosseini, J. D. B. Bradley, J. Sun, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, “CMOS-compatible 75 mW erbium-doped distributed feedback laser,” Opt. Lett. 39, 3106– 3109 (2014).

[63] C. Briggs, T. Buxkemper, L. Czaia, H. Green, and S. Gustafson, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925– 928 (2003).

[64] G. M. Miller, R. M. Briggs, and H. A. Atwater, “Achieving optical gain in waveguide-confined nanocluster-sensitized erbium by pulsed excitation,” J. Appl. Phys. 108, 063109 (2010).

[65] O. Jambois, F. Gourbilleau, A. J. Kenyon, J. Montserrat, R. Rizk, and B. Garrido, “Towards population inversion of electrically pumped Er ions sensitized by Si nanoclusters,” Opt. Express 18, 2230–2235 (2010).

[66] M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater. 19, 1582–1588 (2007).

[67] K. Suh, M. Lee, J. S. Chang, H. Lee, N. Park, G. Y. Sung, and J. H. Shin, “Cooperative upconversion and optical gain in ionbeam sputter-deposited Er(x)Y(2-x)SiO(5) waveguides,” Opt. Express 18, 7724–7731 (2010).

[68] B. Wang, R. Guo, X. Wang, L. Wang, B. Yin, and Z. Zhou, “Large electroluminescence excitation cross section and strong potential gain of erbium in ErYb silicate,” J. Appl. Phys. 113, 103108 (2013).

[69] J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15, 11272– 11277 (2007).

[70] R. E. Camacho-Aguilera, Y. Cai, J. T. Bessette, L. C. Kimerling, and J. Michel, “High active carrier concentration in n-type, thin film Ge using delta-doping,” Opt. Mater. Express 2, 1462–1469 (2012).

[71] Y. Cai, R. Camacho-Aguilera, J. T. Bessette, L. C. Kimerling, and J. Michel, “High phosphorous doped germanium: dopant diffusion and modeling,” J. Appl. Phys. 112, 034509 (2012).

[72] C. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B 39, 1871–1883 (1989).

[73] Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H. Luan, and L. C. Kimerling, “Strain-induced band gap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett. 82, 2044–2046 (2003).

[74] B. Dutt, D. S. Sukhdeo, B. M. Vulovic, S. Gupta, K. C. Saraswat, and J. S. Harris, “Theoretical analysis of GeSn alloys as a gain medium for a Si-compatible laser,” IEEE J. Sel. Top. Quantum Electron. 19, 1502706 (2013).

[75] B. Dutt, D. S. Sukhdeo, D. Nam, B. M. Vulovic, and K. C. Saraswat, “Roadmap to an efficient germanium-on-silicon laser: strain vs. n-type doping,” IEEE Photon. J. 4, 2002–2009 (2012).

[76] M. J. Süess, R. Geiger, R. A. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridges,” Nat. Photonics 7, 466–472 (2013).

[77] R. Geiger, M. J. Suess, R. A. Minamisawa, C. Bonzon, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faiste, and H. Sigg, “Enhanced light emission from Ge micro bridges uniaxially strained beyond 3%,” in IEEE International Conference on Group IV Photonics GFP (IEEE, 2013), pp. 93–94.

[78] D. S. Sukhdeo, D. Nam, J. Kang, J. Petykiewicz, J. H. Lee, W. S. Jung, J. Vuckovic, M. L. Brongersma, and K. C. Saraswat, “Direct bandgap germanium nanowires inferred from 5.0% uniaxial tensile strain,” in IEEE International Conference on Group IV Photonics GFP (IEEE, 2013), pp. 73–74.

[79] D. S. Sukhdeo, D. Nam, J. Kang, M. L. Brongersma, and K. C. Saraswat, “Direct bandgap germanium-on-silicon inferred from 5.7% 100 uniaxial tensile strain invited,” Photon. Res. 2, A8–A13 (2014).

[80] S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).

[81] T. Mitze, M. Schnarrenberger, L. Zimmermann, J. Bruns, F. Fidorra, J. Kreissl, K. Janiak, S. Fidorra, H. Heidrich, and K. Petermann, “Hybrid integration of III/V lasers on a silicon-oninsulator (SOI) optical board,” in 2nd IEEE International Conference on Group IV Photonics (IEEE, 2005), pp. 210–212.

[82] S. Tanaka, S. Jeong, S. Sekiguchi, T. Kurahashi, Y. Tanaka, and K. Morito, “High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology,” Opt. Express 20, 28057–28069 (2012).

[83] N. Hatori, T. Shimizu, M. Okano, M. Ishizaka, T. Yamamoto, Y. Urino, M. Mori, T. Nakamura, and Y. Arakawa, “A novel spot size convertor for hybrid integrated light sources on photonics-electronics convergence system,” in 2012 IEEE 9th International Conference on Group IV Photonics (GFP), (IEEE, 2012), pp. 171–173.

[84] Y. Urino, T. Usuki, J. Fujikata, M. Ishizaka, K. Yamada, T. Horikawa, T. Nakamura, and Y. Arakawa, “High-density optical interconnects by using silicon photonics,” Proc. SPIE 9010, 901006 (2014).

[85] H. Park, A. W. Fang, S. Kodama, and J. E. Bowers, “Hybrid silicon evanescent laser fabricated with a silicon waveguide and III–V offset quantum wells,” Opt. Express 13, 9460 (2005).

[86] D. Liang, D. C. Chapman, Y. Li, D. C. Oakley, T. Napoleone, P. W. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, and J. E. Bowers, “Uniformity study of wafer-scale InP-to-silicon hybrid integration,” Appl. Phys. A 103, 213–218 (2011).

[87] T. Hong, G. Ran, T. Chen, J. Pan, W. Chen, Y. Wang, Y. Cheng, S. Liang, L. Zhao, L. Yin, J. Zhang, W. Wang, and G. Qin, “A selective- area metal bonding InGaAsP-Si laser,” IEEE Photon. Technol. Lett. 22, 1141–1143 (2010).

[88] F. Niklaus, P. Enoksson, E. K lvesten, and G. Stemme, “Lowtemperature full wafer adhesive bonding,” J. Micromech. Microeng. 11, 100–107 (2001).

[89] S. Keyvaninia, M. Muneeb, S. Stankovi , P. J. Van Veldhoven, D. Van Thourhout, and G. Roelkens, “Ultra-thin DVS-BCB adhesive bonding of III–V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Mater. Express 3, 35–46 (2012).

[90] J. Van Campenhout, P. Rojo-Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J. Fedeli, and R. Baets, “Thermal characterization of electrically injected thin-film InGaAsP microdisk lasers on Si,” J. Lightwave Technol. 25, 1543–1548 (2007).

[91] M. N. Sysak, D. Liang, R. Jones, G. Kurczveil, M. Piels, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Hybrid silicon laser technology: a thermal perspective,” IEEE J. Sel. Top. Quantum Electron. 17, 1490–1498 (2011).

[92] Z. Wang, Z. Sheng, C. Qiu, H. Li, A. Wu, X. Wang, S. Zou, and F. Gan, “Optimization and thermal analysis of hybrid microdisk lasers,” in 10th International Conference on Group IV Photonics, Seoul, Korea (South), Aug., 2013, Vol. 8, pp. 49–50.

[93] X. Sun, A. Zadok, M. J. Shearn, K. A. Diest, A. Ghaffari, H. A. Atwater, A. Scherer, and A. Yariv, “Electrically pumped hybrid evanescent Si/InGaAsP lasers,” Opt. Lett. 34, 1345–1347 (2009).

[94] M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett. 24, 76–78 (2012).

[95] S. Keyvaninia, S. Verstuyft, L. V. Landschoot, D. V. Thourhout, and G. Roelkens, “III–V/silicon first order distributed feedback lasers integrated on SOI waveguide,” in 39th European Conference and Exhibition on Optical Communication (ECOC), London, UK, Sept., 2013, pp. 3–6.

[96] A. W. Fang, B. R. Koch, R. Jones, E. Lively, D. Liang, Y. H. Kuo, and J. E. Bowers, “A distributed Bragg reflector silicon evanescent laser,” IEEE Photon. Technol Lett. 20, 1667– 1669 (2008).

[97] S. Keyvaninia, S. Verstuyft, S. Pathak, F. Lelarge, G. H. Duan, D. Bordel, J. M. Fedeli, T. De Vries, B. Smalbrugge, E. J. Geluk, J. Bolk, M. Smit, G. Roelkens, and D. Van Thourhout, “III–V-onsilicon multi-frequency lasers,” Opt. Express 21, 13675–13683 (2013).

[98] D. Bordel, A. Descos, B. Ben Bakir, P. Brianceau, H. Duprez, S. Menezo, G. B. de Farias, and C. Jany, “Heterogeneously integrated III–V/Si distributed Bragg reflector laser with adiabatic coupling,” in 39th European Conference and Exhibition on Optical Communication (ECOC), London, UK, Sept., 2013, pp. 687–689.

[99] B. R. Koch, E. J. Norberg, B. Kim, J. Hutchinson, J. Shin, G. Fish, and A. Fang, “Integrated silicon photonic laser sources for telecom and datacom,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (Optical Society of America, 2013), pp. PDP5C.8.

[100] D. Liang, M. Fiorentino, T. Okumura, H. Chang, D. T. Spencer, Y. Kuo, A. W. Fang, D. Dai, R. G. Beausoleil, and J. E. Bowers, “Electrically-pumped compact hybrid silicon microring lasers for optical interconnects,” Opt. Express 17, 20355–20364 (2009).

[101] K. Takeda, T. Sato, T. Fujii, E. Kuramochi, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated photonic-crystal lasers on silicon for on/off chip optical interconnects,” Opt. Express 23, 702–708 (2015).

[102] M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of roomtemperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93, 362–367 (2003).

[103] Y. Chriqui, L. Largeau, G. Patriarche, G. Saint-Girons, S. Bouchoule, I. Sagnes, D. Bensahel, Y. Campidelli, and O. Kermarrec, “Direct growth of GaAs-based structures on exactly (001)-oriented Ge/Si virtual substrates: reduction of the structural defect density and observation of electroluminescence at room temperature under CW electrical injection,” J. Cryst. Growth 265, 53–59 (2004).

[104] H. Liu, A. Lee, Q. Jiang, and A. Seeds, “InAs/GaAs quantumdot lasers monolithically grown on Si substrate,” in IEEE Photonics Conference (IPC), (IEEE, 2012), pp. 882–883.

[105] H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).

[106] A. Lee, Q. Jiang, M. Tang, A. Seeds, and H. Liu, “Continuouswave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express 20, 22181–22187 (2012).

[107] G. Si, G. Substrates, A. D. Lee, Q. Jiang, M. Tang, Y. Zhang, A. J. Seeds, and H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrate,” IEEE J. Sel. Top. Quantum Electron. 19, 1901107 (2013).

[108] M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/ GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22, 11528–11535 (2014).

[109] Q. Jiang, A. J. Seeds, V. G. Dorogan, H. Liu, M. C. Tang, Y. I. Mazur, J. Wu, G. J. Salamo, M. Benamara, and S. M. Chen, “1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100°C,” Electron. Lett. 50, 1467–1468 (2014).

[110] A. Y. Liu, C. Zhang, A. Snyder, D. Lubychev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance 1.3 μm InAs quantum dot lasers epitaxially grown on silicon,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper W4C.5.

[111] A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 41104 (2014).

[112] G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).

[113] E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 1–11 (2014).

[114] J. C. Rosenberg, W. M. Green, S. Assefa, D. M. Gill, T. Barwicz, M. Yang, S. M. Shank, and Y. A. Vlasov, “A 25 Gbps silicon microring modulator based on an interleaved junction,” Opt. Express 20, 26411–26423 (2012).

[115] X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, J. Yu, and Y. Yu, “44-Gb/s silicon microring modulators based on zigzag PN junctions,” IEEE Photon. Technol. Lett. 24, 1712–1714 (2012).

[116] S. Manipatruni, K. Preston, L. Chen, and M. Lipson, “Ultra-low voltage, ultra-small mode volume silicon microring modulator,” Opt. Express 18, 18235–18242 (2010).

[117] T. Baba, S. Akiyama, M. Imai, N. Hirayama, H. Takahashi, Y. Noguchi, T. Horikawa, and T. Usuki, “50-Gb/s ring-resonatorbased silicon modulator,” Opt. Express 21, 11869 (2013).

[118] M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express 19, 21989–22003 (2011).

[119] A. Biberman, E. Timurdogan, W. A. Zortman, D. C. Trotter, and M. R. Watts, “Adiabatic microring modulators,” Opt. Express 20, 29223–29236 (2012).

[120] E. Timurdogan, C. M. Sorace-Agaskar, E. S. Hosseini, and M. R. Watts, “An interior-ridge silicon microring modulator,” J. Lightwave Technol. 31, 3907–3914 (2013).

[121] X. Li, Q. Deng, and Z. Zhou, “Low loss, high-speed single-mode half-disk resonator,” Opt. Lett. 39, 3810–3813 (2014).

[122] A. Yariv, “Critical coupling and its control in optical waveguidering resonator systems,” IEEE Photon. Technol. Lett. 14, 483–485 (2002).

[123] W. D. Sacher and J. K. Poon, “Dynamics of microring resonator modulators,” Opt. Express 16, 15741–15753 (2008).

[124] W. M. J. Green, R. K. Lee, G. A. DeRose, A. Scherer, and A. Yariv, “Hybrid InGaAsP-InP Mach-Zehnder racetrack resonator for thermooptic switching and coupling control,” Opt. Express 13, 1651–1659 (2005).

[125] W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Optical modulation using anti-crossing between paired amplitude and phase resonators,” Opt. Express 15, 17264–17272 (2007).

[126] W. D. Sacher, W. M. J. Green, S. Assefa, T. Barwicz, H. Pan, S. M. Shank, Y. A. Vlasov, and J. K. S. Poon, “Coupling modulation of microrings at rates beyond the linewidth limit,” Opt. Express 21, 9722–9733 (2013).

[127] S. Karimelahi and A. Sheikholeslami, “PAM-N signaling by coupling modulation in a ring resonator,” Opt. Lett. 40, 332–335 (2015).

[128] W. D. Sacher, W. M. J. Green, D. M. Gill, S. Assefa, T. Barwicz, M. Khater, E. Kiewra, C. Reinholm, S. M. Shank, Y. A. Vlasov, and J. K. S. Poon, “Binary phase-shift keying by coupling modulation of microrings,” Opt. Express 22, 20252–20259 (2014).

[129] W. D. Sacher and J. K. Poon, “Microring quadrature modulators,” Opt. Lett. 34, 3878–3880 (2009).

[130] X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, Y. Yu, and J. Yu, “High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization,” Opt. Express 21, 4116–4125 (2013).

[131] X. Tu, T. Liow, J. Song, X. Luo, Q. Fang, M. Yu, and G. Lo, “50-Gb/s silicon optical modulator with traveling-wave electrodes,” Opt. Express 21, 12776–12782 (2013).

[132] J. Ding, H. Chen, L. Yang, L. Zhang, R. Ji, Y. Tian, W. Zhu, Y. Lu, P. Zhou, R. Min, and M. Yu, “Ultra-low-power carrier-depletion Mach-Zehnder silicon optical modulator,” Opt. Express 20, 7081–7087 (2012).

[133] J. Ding, R. Ji, L. Zhang, and L. Yang, “Electro-optical response analysis of a 40 Gb/s silicon Mach-Zehnder optical modulator,” J. Lightwave Technol. 31, 2434–2440 (2013).

[134] A. M. Gutierrez, A. Brimont, G. Rasigade, M. Ziebell, D. Marris- Morini, J. M. Fedeli, L. Vivien, J. Marti, and P. Sanchis, “Ringassisted Mach-Zehnder interferometer silicon modulator for enhanced performance,” J. Lightwave Technol. 30, 9–14 (2012).

[135] X. Xie, J. Khurgin, K. Jin, and F. S. Chow, “Linearized Mach- Zehnder intensity modulator,” IEEE Photon. Technol. Lett. 15, 531–533 (2003).

[136] H. Yu, M. Pantouvaki, P. Verheyen, G. Lepage, P. Absil, W. Bogaerts, and J. Van Campenhout, “Silicon dual-ring modulator driven by differential signal,” Opt. Lett. 39, 6379–6382 (2014).

[137] T. Gu, Y. K. Chen, C. W. Wong, and P. Dong, “Cascaded uncoupled dual-ring modulator,” Opt. Lett. 39, 4974–4977 (2014).

[138] T. Baba, H. C. Nguyen, N. Yazawa, Y. Terada, S. Hashimoto, and T. Watanabe, “Slow-light Mach-Zehnder modulators based on Si photonic crystals,” Sci. Technol. Adv. Mater. 15, 24602 (2014).

[139] H. C. Nguyen, S. Hashimoto, M. Shinkawa, and T. Baba, “Compact and fast photonic crystal silicon optical modulators,” Opt. Express 20, 22465–22474 (2012).

[140] H. C. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, “Photonic crystal silicon optical modulators: carrier-injection and depletion at 10 Gb/s,” IEEE J. Quantum Electron. 48, 210–220 (2012).

[141] S. Meister, H. Rhee, A. Al-Saadi, B. A. Franke, S. Kupijai, C. Theiss, L. Zimmermann, B. Tillack, H. H. Richter, H. Tian, D. Stolarek, T. Schneider, U. Woggon, and H. J. Eichler, “Matching p-i-n-junctions and optical modes enables fast and ultra-small silicon modulators,” Opt. Express 21, 16210 (2013).

[142] P. Chaisakul, D. Marris-Morini, M. Rouifed, J. Frigerio, D. Chrastina, J. Coudevylle, X. L. Roux, S. Edmond, G. Isella, and L. Vivien, “Recent progress in GeSi electro-absorption modulators,” Sci. Technol. Adv. Mater. 15, 14601 (2014).

[143] J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralowenergy GeSi electro-absorption modulators,” Nat. Photonics 2, 433–437 (2008).

[144] P. Chaisakul, D. Marris-Morini, M. S. Rouifed, G. Isella, D. Chrastina, J. Frigerio, X. Le Roux, S. Edmond, J. R. Coudevylle, and L. Vivien, “23 GHz Ge/SiGe multiple quantum well electro-absorption modulator,” Opt. Express 20, 3219– 3224 (2012).

[145] S. Ren, Y. Rong, S. A. Claussen, R. K. Schaevitz, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides,” IEEE Photon. Technol. Lett. 24, 461–463 (2012).

[146] C. Debaes, A. Bhatnagar, D. Agarwal, R. Chen, G. A. Keeler, N. C. Helman, H. Thienpont, and D. A. B. Miller, “Receiver-less optical clock injection for clock distribution networks,” IEEE J. Sel. Top. Quantum Electron. 9, 400–409 (2003).

[147] C. T. DeRose, D. C. Trotter, W. A. Zortman, A. L. Starbuck, M. Fisher, M. R. Watts, and P. S. Davids, “Ultra compact 45 GHz CMOS compatible germanium waveguide photodiode with low dark current,” Opt. Express 19, 24897–24904 (2011).

[148] W. Zhao and Y. Cao, “New generation of predictive technology model for sub-45 nm early design exploration,” IEEE Trans. Electron Devices 53, 2816–2823 (2006).

[149] J. C. Campbell, “Recent advances in telecommunications avalanche photodiodes,” J. Lightwave Technol. 25, 109–121 (2007).

[150] A. Rochas, A. R. Pauchard, P. A. Besse, D. Pantic, Z. Prijic, and R. S. Popovic, “Low-noise silicon avalanche photodiodes fabricated in conventional CMOS technologies,” IEEE Trans. Electron Devices 49, 387–394 (2002).

[151] A. R. Hawkins, W. Wu, P. Abraham, K. Streubel, and J. E. Bowers, “High gain-bandwidth-product silicon heterointerface photodetector,” Appl. Phys. Lett. 70, 303–305 (1997).

[152] Y. Kang, Y. H. Lo, M. Bitter, S. Kristjansson, Z. Pan, and A. Pauchard, “InGaAs-on-Si single photon avalanche photodetectors,” Appl. Phys. Lett. 85, 1668–1670 (2004).

[153] Y. Kang, H. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. Kuo, H. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3, 59–63 (2009).

[154] G. Masini, G. Capellini, J. Witzens, and C. Gunn, “A fourchannel, 10 Gbps monolithic optical receiver in 130 nm CMOS with integrated Ge waveguide photodetector,” in National Fiber Optic Engineers Conference (Optical Society of America, 2007), paper PDP31.

[155] J. Joo, S. Kim, I. G. Kim, K. Jang, and G. Kim, “High-sensitivity 10 Gbps Ge-on-Si photoreceiver operating at lambda approximately 1.55 microm,” Opt. Express 18, 16474–16479 (2010).

[156] S. Sahni and G. Masini, “Ge photodiodes for CMOS photonics optical engines and interconnects,” ECS Trans. 50, 773–777 (2013).

[157] T. Liow, N. Duan, A. E. Lim, X. Tu, M. Yu, and G. Lo, “Waveguide Ge/Si avalanche photodetector with a unique low-height-profile device structure,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2014), pp. 1–3.

[158] L. Virot, P. Crozat, J. Fédéli, J. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 1–6 (2014).

[159] S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464, 80–84 (2010).

[160] H. T. Chen, J. Verbist, P. Verheyen, P. De Heyn, G. Lepage, J. De Coster, P. Absil, X. Yin, J. Bauwelinck, J. Van Campenhout, and G. Roelkens, “High sensitivity 10 Gb/s Si photonic receiver based on a low-voltage waveguide-coupled Ge avalanche photodetector,” Opt. Express 23, 815–822 (2015).

Zhiping Zhou, Bing Yin, Qingzhong Deng, Xinbai Li, Jishi Cui. Lowering the energy consumption in silicon photonic devices and systems [Invited][J]. Photonics Research, 2015, 3(5): 05000B28.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!