Photonics Research, 2021, 9 (1): 01000073, Published Online: Apr. 1, 2021  

Plasmonic evolution maps for planar metamaterials Download: 717次

Author Affiliations
1 Institute of Micro-nano Photonics & Beam Steering, School of Science, Nanjing University of Science and Technology, Nanjing 210094, China
2 Centre for Disruptive Photonic Technologies, The Photonics Institute, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
3 College of Physics and Electronic Information Science, Tianjin Normal University, Tianjin 300387, China
4 e-mail: jly@njust.edu.cn
5 e-mail: zexiang@ntu.edu.sg
Copy Citation Text

Liyong Jiang, Jianli Jiang, Zebin Zhu, Guanghui Yuan, Ming Kang, Ze Xiang Shen. Plasmonic evolution maps for planar metamaterials[J]. Photonics Research, 2021, 9(1): 01000073.

References

[1] N. I. Zheludev. The road ahead for metamaterials. Science, 2010, 328: 582-583.

[2] Y. M. Liu, X. Zhang. Metamaterials: a new frontier of science and technology. Chem. Soc. Rev., 2011, 40: 2494-2507.

[3] H. T. Chen, A. J. Taylor, N. F. Yu. A review of metasurfaces: physics and applications. Rep. Prog. Phys., 2016, 79: 076401.

[4] S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, C. R. Simovski. Metasurfaces: from microwaves to visible. Phys. Rep., 2016, 634: 1-72.

[5] D. R. Smith, J. B. Pendry, M. C. K. Wiltshire. Metamaterials and negative refractive index. Science, 2004, 305: 788-792.

[6] U. Fano. The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves). J. Opt. Soc. Am., 1941, 31: 213-222.

[7] B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater., 2010, 9: 707-715.

[8] N. Papasimakis, V. A. Fedotov, N. I. Zheludev, S. L. Prosvirnin. Metamaterial analog of electromagnetically induced transparency. Phys. Rev. Lett., 2008, 101: 253903.

[9] N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, H. Giessen. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater., 2009, 8: 758-762.

[10] J. Q. Gu, R. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. G. Han, W. L. Zhang. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat. Commun., 2012, 3: 1151.

[11] Y. Li, S. Kita, P. Munoz, O. Reshef, D. I. Vulis, M. Yin, M. Loncar, E. Mazur. On-chip zero-index metamaterials. Nat. Photonics, 2015, 9: 738-743.

[12] H. C. Chu, Q. Li, B. B. Liu, J. Luo, S. L. Sun, Z. H. Hang, L. Zhou, Y. Lai. A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials. Light Sci. Appl., 2018, 7: 50.

[13] H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, V. M. Menon. Topological transitions in metamaterials. Science, 2012, 336: 205-209.

[14] W. J. Chen, S. J. Jiang, X. D. Chen, B. C. Zhu, L. Zhou, J. W. Dong, C. T. Chan. Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide. Nat. Commun., 2014, 5: 5782.

[15] J. Cha, K. W. Kim, C. Daraio. Experimental realization of on-chip topological nanoelectromechanical metamaterials. Nature, 2018, 564: 229-233.

[16] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla. Perfect metamaterial absorber. Phys. Rev. Lett., 2008, 100: 207402.

[17] X. L. Xu, B. Peng, D. H. Li, J. Zhang, L. M. Wong, Q. Zhang, S. J. Wang, Q. H. Xiong. Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing. Nano Lett., 2011, 11: 3232-3238.

[18] C. H. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, G. Shvets. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat. Mater., 2012, 11: 69-75.

[19] E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, M. Kadodwala. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat. Nanotechnol., 2010, 5: 783-787.

[20] C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, G. Shvets. Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances. Nat. Commun., 2014, 5: 3892.

[21] Y. Chen, J. Gao, X. D. Yang. Chiral metamaterials of plasmonic slanted nanoapertures with symmetry breaking. Nano Lett., 2018, 18: 520-527.

[22] Y. Zhao, A. Alu. Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates. Nano Lett., 2013, 13: 1086-1091.

[23] Y. J. Chiang, T. J. Yen. A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission. Appl. Phys. Lett., 2013, 102: 011129.

[24] S. C. Jiang, X. Xiong, Y. S. Hu, Y. H. Hu, G. B. Ma, R. W. Peng, C. Sun, M. Wang. Controlling the polarization state of light with a dispersion-free metastructure. Phys. Rev. X, 2014, 4: 021026.

[25] M. Papaioannou, E. Plum, J. Valente, E. T. F. Rogers, N. I. Zheludev. Two-dimensional control of light with light on metasurfaces. Light Sci. Appl., 2016, 5: e16070.

[26] A. Xomalis, I. Demirtzioglou, E. Plum, Y. Jung, V. Nalla, C. Lacava, K. F. MacDonald, P. Petropoulos, D. J. Richardson, N. I. Zheludev. Fibre-optic metadevice for all-optical signal modulation based on coherent absorption. Nat. Commun., 2018, 9: 182.

[27] H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, W. J. Padilla. Experimental demonstration of frequency-agile terahertz metamaterials. Nat. Photonics, 2008, 2: 295-298.

[28] G. Scalari, C. Maissen, D. Turcinkova, D. Hagenmueller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, J. Faist. Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial. Science, 2012, 335: 1323-1326.

[29] F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schoenenberger, J. W. Choi, H. G. Park, M. Beck, J. Faist. Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial. Nano Lett., 2013, 13: 3193-3198.

[30] R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, D. A. Ritchie. Low-bias terahertz amplitude modulator based on split-ring resonators and graphene. ACS Nano, 2014, 8: 2548-2554.

[31] N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, G. Shvets. Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces. ACS Photon., 2015, 2: 216-227.

[32] P. Q. Liu, I. J. Luxmoore, S. A. Mikhailov, N. A. Savostianova, F. Valmorra, J. Faist, G. R. Nash. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons. Nat. Commun., 2015, 6: 8969.

[33] O. Balci, N. Kakenov, E. Karademir, S. Balci, S. Cakmakyapan, E. O. Polat, H. Caglayan, E. Ozbay, C. Kocabas. Electrically switchable metadevices via graphene. Sci. Adv., 2018, 4: eaao1749.

[34] A. Chanana, X. J. Liu, C. Zhang, Z. V. Vardeny, A. Nahata. Ultrafast frequency-agile terahertz devices using methylammonium lead halide perovskites. Sci. Adv., 2018, 4: eaar7353.

[35] M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, F. Capasso. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 2016, 352: 1190-1194.

[36] S. M. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, J. W. Chen, S. H. Lu, J. Chen, B. B. Xu, C. H. Kuan, T. Li, S. N. Zhu, D. P. Tsai. Broadband achromatic optical metasurface devices. Nat. Commun., 2017, 8: 187.

[37] L. L. Huang, X. Z. Chen, H. Muhlenbernd, H. Zhang, S. M. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, K. W. Cheah, C. W. Qiu, J. S. Li, T. Zentgraf, S. Zhang. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun., 2013, 4: 2808.

[38] G. X. Zheng, H. Muhlenbernd, M. Kenney, G. X. Li, T. Zentgraf, S. Zhang. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol., 2015, 10: 308-312.

[39] G. H. Yuan, N. I. Zheludev. Detecting nanometric displacements with optical ruler metrology. Science, 2019, 364: 771-775.

[40] G. Mie. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys., 1908, 330: 377-445.

[41] M. Kang, Y. D. Chong, H. T. Wang, W. R. Zhu, M. Premaratne. Critical route for coherent perfect absorption in a Fano resonance plasmonic system. Appl. Phys. Lett., 2014, 105: 223301.

[42] J. Petschulat, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tunnermann, F. Lederer, T. Pertsch. Multipole approach to metamaterials. Phys. Rev. A, 2008, 78: 043811.

[43] L. Y. Jiang, T. T. Yin, A. M. Dubrovkin, Z. G. Dong, Y. T. Chen, W. J. Chen, J. K. W. Yang, Z. X. Shen. In-plane coherent control of plasmon resonances for plasmonic switching and encoding. Light Sci. Appl., 2019, 8: 21.

[44] J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, M. Sorolla. Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines. IEEE Antennas Wireless Propag. Lett., 2005, 53: 1451-1461.

[45] K. G. Balmain, A. A. E. Luttgen, P. C. Kremer. Resonance cone formation, reflection, refraction, and focusing in a planar anisotropic metamaterial. IEEE Antennas Wireless. Propag. Lett., 2002, 1: 146-149.

[46] W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, F. R. Aussenegg. Optical properties of two interacting gold nanoparticles. Opt. Commun., 2003, 220: 137-141.

[47] E. Prodan, C. Radloff, N. J. Halas, P. Nordlander. A hybridization model for the plasmon response of complex nanostructures. Science, 2003, 302: 419-422.

[48] P. K. Jain, M. A. El-Sayed. Plasmonic coupling in noble metal nanostructures. Chem. Phys. Lett., 2010, 487: 153-164.

[49] N. J. Halas, S. Lal, W. S. Chang, S. Link, P. Nordlander. Plasmons in strongly coupled metallic nanostructures. Chem. Rev., 2011, 111: 3913-3961.

[50] B. Memarzadeh, H. Mosallaei. Array of planar plasmonic scatterers functioning as light concentrator. Opt. Lett., 2011, 36: 2569-2571.

[51] S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, L. Zhou. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater., 2012, 11: 426-431.

[52] H. C. Guo, N. Liu, L. W. Fu, T. P. Meyrath, T. Zentgraf, H. Schweizer, H. Giessen. Resonance hybridization in double split-ring resonator metamaterials. Opt. Express, 2007, 15: 12095-12101.

[53] N. Liu, S. Kaiser, H. Giessen. Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules. Adv. Mater., 2008, 20: 4521-4525.

[54] K. Aydin, I. M. Pryce, H. A. Atwater. Symmetry breaking and strong coupling in planar optical metamaterials. Opt. Express, 2010, 18: 13407-13417.

[55] F. V. Cube, S. Irsen, R. Diehl, J. Niegemann, K. Busch, S. Linden. From isolated metaatoms to photonic metamaterials: evolution of the plasmonic near-field. Nano Lett., 2013, 13: 703-708.

[56] R. Singh, I. A. I. Al-Naib, Y. P. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, W. L. Zhang. Observing metamaterial induced transparency in individual Fano resonators with broken symmetry. Appl. Phys. Lett., 2011, 99: 201107.

[57] R. Singh, I. A. I. Al-Naib, M. Koch, W. Zhang. Asymmetric planar terahertz metamaterials. Opt. Express, 2010, 18: 13044-13050.

[58] R. Singh, W. Cao, I. Al-Naib, L. Q. Cong, W. Withayachumnankul, W. L. Zhang. Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces. Appl. Phys. Lett., 2014, 105: 171101.

[59] F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marques, F. Martin, M. Sorolla. Babinet principle applied to the design of metasurfaces and metamaterials. Phys. Rev. Lett., 2004, 93: 197401.

[60] H. T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, W. J. Padilla. Complementary planar terahertz metamaterials. Opt. Express, 2007, 15: 1084-1095.

[61] R. Singh, A. K. Azad, J. F. O’Hara, A. J. Taylor, W. L. Zhang. Effect of metal permittivity on resonant properties of terahertz metamaterials. Opt. Lett., 2008, 33: 1506-1508.

Liyong Jiang, Jianli Jiang, Zebin Zhu, Guanghui Yuan, Ming Kang, Ze Xiang Shen. Plasmonic evolution maps for planar metamaterials[J]. Photonics Research, 2021, 9(1): 01000073.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!