High Power Laser Science and Engineering, 2021, 9 (1): 010000e9, Published Online: Mar. 4, 2021  

Emission mechanism for the silicon He-α lines in a photoionization experiment Download: 728次

Author Affiliations
1 Department of Astronomy, Beijing Normal University, Beijing100875, China
2 College of Physics and Electronic Engineering, Qilu Normal University, Jinan250200, China
3 CAS Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing100101, China
4 School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing101408, China
5 Graduate School of China Academy of Engineering Physics, Beijing100196, China
6 Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai200240, China
Figures & Tables

Fig. 1. Black line: the experimental spectrum of Fujioka et al.[13]. Blue line: the theoretical result of an optically thin model. f, Li, i and r denote the position of the forbidden line, satellite lines, the intercombination line and the resonance line, respectively.

13]. Blue line: the theoretical result of an optically thin model. f, Li, i and r denote the position of the forbidden line, satellite lines, the intercombination line and the resonance line, respectively." class="imgSplash img-thumbnail" style="cursor:pointer;">

下载图片 查看原文

Fig. 2. Comparison of the collisional excitation cross-section with the results of Refs. [2629]. The transitions include 1s2s 3S 1s2p 1P1, 1s2s 3S 1s2s 1S1, 1s2p 3P 1s2p 1P1 and 1s2s 1S 1s2p 1P1 of He-like Si.

下载图片 查看原文

Fig. 3. Contributions of atomic processes under the conditions of the Fujioka et al. photoionization experiment for five selected levels. The atomic processes are listed on the x-axis. The blue processes are related to the radiation field, the dark-gray processes are controlled by collisions and the green processes are autoionization and dielectronic capture. Solid black lines represent the populating contributions for the levels, and the red dashed lines represent the depopulating contributions for the levels. The contribution friction of each process is also labeled.

下载图片 查看原文

Fig. 4. Evolution of fractions of charge states from C-like ion to bare nuclei in the time-dependent model with a Gaussian radiation pulse (red line). The radiation pulse is adapted as a Gaussian distribution with FWHM of 160 ps and =80 ps[13,16,20].

13,16" target="_self" style="display: inline;">16,20" target="_self" style="display: inline;">20]." class="imgSplash img-thumbnail" style="cursor:pointer;">

下载图片 查看原文

Fig. 5. Evolution of process contributions to 1s2p 1P1. Upper panel: populating contributions. Lower panel: depopulating contributions. The radiation pulse is also plotted.

下载图片 查看原文

Fig. 6. Black line: the experimental spectrum of Fujioka et al.[13]. Green line: theoretical spectrum of time-dependent model. Red line: theoretical spectrum of optically thick model.

13]. Green line: theoretical spectrum of time-dependent model. Red line: theoretical spectrum of optically thick model." class="imgSplash img-thumbnail" style="cursor:pointer;">

下载图片 查看原文

Table1. Transition energies and Einstein A coefficients of some intense silicon lines between 1820 eV and 1865 eV. The resonance, intercombination and forbidden lines are marked as , and , respectively.

IonTransitionThis studyPalmeri et al.
UpperLowerEnergy (eV)A (s−1)Energy (eV)A (s−1)
He-like$\rm 1s2p$${}^1{\rm P}_1$$\rm 1{s}^2$$\rm {}^1{S}_0$1864.8115 ($R/w$)3.87×10131864.9798044.07×1013
Li-like$\rm 1s2p(1P)3d$$\rm {}^2{F}_{5/2}$$\rm 1{s}^23d$$\rm {}^2{D}_{3/2}$1863.7742952.50×1013
Li-like$\rm 1s2p(1P)3d$$\rm {}^2{F}_{7/2}$$\rm 1{s}^23d$$\rm {}^2{D}_{5/2}$1863.3261312.90×1013
Li-like$\rm 1s2p(1P)3d$$\rm {}^2{D}_{5/2}$$\rm 1{s}^23d$$\rm {}^2{D}_{5/2}$1861.8431253.14×1013
Li-like$\rm 1s2p(1P)3d$$\rm {}^2{D}_{3/2}$$\rm 1{s}^23d$$\rm {}^2{D}_{3/2}$1861.8151673.29×1013
Li-like$\rm 1s2p(1P)3s$$\rm {}^2{P}_{1/2}$$\rm 1{s}^23s$$\rm {}^2{S}_{1/2}$1861.2841142.73×1013
Li-like$\rm 1s2p(1P)3s$$\rm {}^2{P}_{3/2}$$\rm 1{s}^23s$$\rm {}^2{S}_{1/2}$1861.1164761.54×1013
Li-like$\rm 1s2p(1P)3p$$\rm {}^2{P}_{3/2}$$\rm 1{s}^23p$$\rm {}^2{P}_{3/2}$1860.7812913.24×1013
Li-like$\rm 1s2p(1P)3p$$\rm {}^2{D}_{3/2}$$\rm 1{s}^23p$$\rm {}^2{P}_{1/2}$1860.6416662.88×1013
Li-like$\rm 1s2p(1P)3p$$\rm {}^2{P}_{1/2}$$\rm 1{s}^23p$$\rm {}^2{P}_{1/2}$1860.6416662.59×1013
Li-like$\rm 1s2p(1P)3p$$\rm {}^2{D}_{5/2}$$\rm 1{s}^23p$$\rm {}^2{P}_{3/2}$1860.3345652.88×1013
Li-like$\rm 1s(2S)2{p}^2$$\rm {}^2{S}_{1/2}$$\rm 1{s}^23p$$\rm {}^2{P}_{3/2}$1856.0735551.21×10131856.7128521.27×1013
Li-like$\rm 1s(2S)2s2p(1P)$$\rm {}^2{P}_{3/2}$$\rm 1{s}^22s$$\rm {}^2{S}_{1/2}$1854.0473957.36×10121854.5465852.82×1012
Li-like$\rm 1s(2S)2s2p(1P)$$\rm {}^2{P}_{1/2}$$\rm 1{s}^22s$$\rm {}^2{S}_{1/2}$1853.8810584.89×10121854.2137624.96×1012
He-like$\rm 1s2p$$\rm {}^3{P}_1$$\rm 1{s}^2$$\rm {}^1{S}_0$1853.8562 ($I/x$)3.77×107
He-like$\rm 1s2p$$\rm {}^3{P}_2$$\rm 1{s}^2$$\rm {}^1{S}_0$1852.9801 ($I/y$)1.36×1011
Li-like$\rm 1s(2S)2s2p(3P)$$\rm {}^2{P}_{3/2}$$\rm 1{s}^22s$$\rm {}^2{S}_{1/2}$1844.8057113.26×10131845.6570413.50×1013
Li-like$\rm 1s(2S)2s2p(3P)$$\rm {}^2{P}_{1/2}$$\rm 1{s}^22s$$\rm {}^2{S}_{1/2}$1844.2294493.06×10131845.1077063.29×1013
Li-like$\rm 1s(2S)2{p}^2(3P)$$\rm {}^2{P}_{1/2}$$\rm 1{s}^22p$$\rm {}^2{P}_{3/2}$1842.8588454.67×10131842.4480611.76×1013
Li-like$\rm 1s(2S)2{p}^2(1D)$$\rm {}^2{D}_{5/2}$$\rm 1{s}^22p$$\rm {}^2{P}_{1/2}$1840.2329891.81×10131840.4788451.85×1013
Li-like$\rm 1s(2S)2{p}^2(1D)$$\rm {}^2{D}_{3/2}$$\rm 1{s}^22p$$\rm {}^2{P}_{3/2}$1839.1138081.75×10131839.5776941.82×1013
He-like$\rm 1s2s$$\rm {}^3{S}_1$$\rm 1{s}^2$$\rm {}^1{S}_0$1838.2023 ($F/z$)3.27×105
Be-like$\rm 1s2{p}^3$$\rm {}^1{P}_1$$\rm 1{s}^22{p}^2$$\rm {}^1{D}_2$1831.2363552.61×10131831.1281722.81×1013
Be-like$\rm 1s2{s}^22p$$\rm {}^1{P}_1$$\rm 1{s}^22{s}^2$$\rm {}^1{S}_0$1828.3468623.21×10131828.1851043.48×1013
Be-like$\rm 1s(2S)2s2{p}^2(2S)$$\rm {}^1{S}_0$$\rm 1{s}^22s2p$$\rm {}^1{P}_1$1827.1074511.79×10131827.9964231.64×1013
Be-like$\rm 1s(2S)2s2{p}^2(2P)$$\rm {}^1{P}_1$$\rm 1{s}^22s2p$$\rm {}^1{P}_1$1827.1074514.91×10131827.4844855.32×1013
Be-like$\rm 1s(2S)2s2{p}^2(4P)$$\rm {}^3{P}_2$$\rm 1{s}^22{p}^2$$\rm {}^3{P}_2$1823.6406584.65×10131823.4260964.25×1013
Be-like$\rm 1s(2S)2s2{p}^2(2D)$$\rm {}^3{D}_2$$\rm 1{s}^22 ssp$$\rm {}^3{P}_1$1823.5870132.40×10131823.0775412.18×1013
Be-like$\rm 1s(2S)2s2{p}^2(2D)$$\rm {}^3{D}_1$$\rm 1{s}^22 ssp$$\rm {}^3{P}_0$1823.5333712.28×10131823.3188342.53×1013

查看原文

Bo Han, Feilu Wang, David Salzmann, Jiayong Zhong, Gang Zhao. Emission mechanism for the silicon He-α lines in a photoionization experiment[J]. High Power Laser Science and Engineering, 2021, 9(1): 010000e9.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!