光学学报, 2018, 38 (4): 0430004, 网络出版: 2018-07-10   

Ag纳米颗粒修饰碳纳米管复合结构的拉曼增强及其结构参数优化 下载: 997次

Raman Enhancement and Structural Parameters Optimization of Silver Nanoparticles/Carbon Nanotubes Composite Structure
作者单位
重庆大学光电工程学院光电技术及系统教育部重点实验室, 重庆 400044
引用该论文

张晓蕾, 张洁, 朱永. Ag纳米颗粒修饰碳纳米管复合结构的拉曼增强及其结构参数优化[J]. 光学学报, 2018, 38(4): 0430004.

Xiaolei Zhang, Jie Zhang, Yong Zhu. Raman Enhancement and Structural Parameters Optimization of Silver Nanoparticles/Carbon Nanotubes Composite Structure[J]. Acta Optica Sinica, 2018, 38(4): 0430004.

参考文献

[1] Stiles P L, Dieringer J A, Shah N C, et al. Surface-enhanced Raman spectroscopy[J]. Annual Review of Analytical Chemistry, 2008, 1(2): 601-626.

    Stiles P L, Dieringer J A, Shah N C, et al. Surface-enhanced Raman spectroscopy[J]. Annual Review of Analytical Chemistry, 2008, 1(2): 601-626.

[2] Kambhampati P, Child C M, Foster M C, et al. On the chemical mechanism of surface enhanced Raman scattering: Experiment and theory[J]. Journal of Chemical Physics, 1998, 108(12): 5013-5026.

    Kambhampati P, Child C M, Foster M C, et al. On the chemical mechanism of surface enhanced Raman scattering: Experiment and theory[J]. Journal of Chemical Physics, 1998, 108(12): 5013-5026.

[3] Shen X S, Wang G Z, Hong X, et al. Nanospheres of silver nanoparticles: Agglomeration, surface morphology control and application as SERS substrates[J]. Physical Chemistry Chemical Physics, 2009, 11(34): 7450-7454.

    Shen X S, Wang G Z, Hong X, et al. Nanospheres of silver nanoparticles: Agglomeration, surface morphology control and application as SERS substrates[J]. Physical Chemistry Chemical Physics, 2009, 11(34): 7450-7454.

[4] Lin W C, Liao L S, Chen Y H, et al. Size dependence of nanoparticle-SERS enhancement from silver film over nanosphere (AgFON) substrate[J]. Plasmonics, 2011, 6(2): 201-206.

    Lin W C, Liao L S, Chen Y H, et al. Size dependence of nanoparticle-SERS enhancement from silver film over nanosphere (AgFON) substrate[J]. Plasmonics, 2011, 6(2): 201-206.

[5] Joseph V, Matschulat A, Polte J, et al. SERS enhancement of gold nanospheres of defined size[J]. Journal of Raman Spectroscopy, 2011, 42(9): 1736-1742.

    Joseph V, Matschulat A, Polte J, et al. SERS enhancement of gold nanospheres of defined size[J]. Journal of Raman Spectroscopy, 2011, 42(9): 1736-1742.

[6] Liu H, Lin D, Sun Y, et al. Cetylpyridinium chloride activated trinitrotoluene explosive lights up robust and ultrahigh surface-enhanced resonance Raman scattering in a silver sol[J]. Chemistry, 2013, 19(27): 8789-8796.

    Liu H, Lin D, Sun Y, et al. Cetylpyridinium chloride activated trinitrotoluene explosive lights up robust and ultrahigh surface-enhanced resonance Raman scattering in a silver sol[J]. Chemistry, 2013, 19(27): 8789-8796.

[7] Lin Y Y, Liao J D, Ju Y H, et al. Focused ion beam-fabricated Au micro/nanostructures used as a surface enhanced Raman scattering-active substrate for trace detection of molecules and influenza virus[J]. Nanotechnology, 2011, 22(18): 185308-185315.

    Lin Y Y, Liao J D, Ju Y H, et al. Focused ion beam-fabricated Au micro/nanostructures used as a surface enhanced Raman scattering-active substrate for trace detection of molecules and influenza virus[J]. Nanotechnology, 2011, 22(18): 185308-185315.

[8] Wang C, Chang Y C, Yao J, et al. Surface enhanced Raman spectroscopy by interfered femtosecond laser created nanostructures[J]. Applied Physics Letters, 2012, 100(2): 023107.

    Wang C, Chang Y C, Yao J, et al. Surface enhanced Raman spectroscopy by interfered femtosecond laser created nanostructures[J]. Applied Physics Letters, 2012, 100(2): 023107.

[9] Galopin E, Barbillat J, Coffinier Y, et al. Silicon nanowires coated with silver nanostructures as ultrasensitive interfaces for surface-enhanced Raman spectroscopy[J]. ACS Applied Materials & Interfaces, 2009, 1(7): 1396-1403.

    Galopin E, Barbillat J, Coffinier Y, et al. Silicon nanowires coated with silver nanostructures as ultrasensitive interfaces for surface-enhanced Raman spectroscopy[J]. ACS Applied Materials & Interfaces, 2009, 1(7): 1396-1403.

[10] Yang L, Yan B, Premasiri W R, et al. Engineering nanoparticle cluster arrays for bacterial biosensing: The role of the building block in multiscale SERS substrates[J]. Advanced Functional Materials, 2010, 20(16): 2619-2628.

    Yang L, Yan B, Premasiri W R, et al. Engineering nanoparticle cluster arrays for bacterial biosensing: The role of the building block in multiscale SERS substrates[J]. Advanced Functional Materials, 2010, 20(16): 2619-2628.

[11] Seol M L, Choi S J, Baek D J, et al. A nanoforest structure for practical surface-enhanced Raman scattering substrates[J]. Nanotechnology, 2012, 23(9): 095301.

    Seol M L, Choi S J, Baek D J, et al. A nanoforest structure for practical surface-enhanced Raman scattering substrates[J]. Nanotechnology, 2012, 23(9): 095301.

[12] Wu H Y, Choi C J, Cunningham B T. Plasmonic nanogap-enhanced Raman scattering using a resonant nanodome array[J]. Small, 2012, 8(18): 2878-2885.

    Wu H Y, Choi C J, Cunningham B T. Plasmonic nanogap-enhanced Raman scattering using a resonant nanodome array[J]. Small, 2012, 8(18): 2878-2885.

[13] Jiao Y, Ryckman J D, Ciesielski P N, et al. Patterne nanoporous gold as an effective SERS template[J]. Nanotechnology, 2011, 22(29): 295302.

    Jiao Y, Ryckman J D, Ciesielski P N, et al. Patterne nanoporous gold as an effective SERS template[J]. Nanotechnology, 2011, 22(29): 295302.

[14] 王进霞, 洪瑞金, 陶春先, 等. 纳米Cu2O薄膜的制备及其表面增强拉曼光谱[J]. 光学学报, 2017, 37(8): 0816004.

    王进霞, 洪瑞金, 陶春先, 等. 纳米Cu2O薄膜的制备及其表面增强拉曼光谱[J]. 光学学报, 2017, 37(8): 0816004.

    Wang J X, Hong R J, Tao C X, et al. Fabrication and surface enhanced Raman spectroscopy of nano-Cu2O thin films[J]. Acta Optica Sinica, 2017, 37(8): 0816004.

    Wang J X, Hong R J, Tao C X, et al. Fabrication and surface enhanced Raman spectroscopy of nano-Cu2O thin films[J]. Acta Optica Sinica, 2017, 37(8): 0816004.

[15] Niaura G, Gaigalas A K, Vilker V L. Surface-enhanced Raman spectroscopy of phosphate anions: Adsorption on silver, gold, and copper electrodes[J]. Journal of Physical Chemistry B, 1997, 101(45): 9250-9262.

    Niaura G, Gaigalas A K, Vilker V L. Surface-enhanced Raman spectroscopy of phosphate anions: Adsorption on silver, gold, and copper electrodes[J]. Journal of Physical Chemistry B, 1997, 101(45): 9250-9262.

[16] Kudelski A. Structures of monolayers formed from different HS-(CH2)2-X thiols on gold, silver and copper: Comparitive studies by surface-enhanced Raman scattering[J]. Journal of Raman Spectroscopy, 2003, 34(11): 853-862.

    Kudelski A. Structures of monolayers formed from different HS-(CH2)2-X thiols on gold, silver and copper: Comparitive studies by surface-enhanced Raman scattering[J]. Journal of Raman Spectroscopy, 2003, 34(11): 853-862.

[17] 李丽美, 方萍萍, 杨志林, 等. 三维时域有限差分法计算金纳米粒子尺寸与活性的关联[J]. 光谱学与光谱分析, 2009, 29(5): 1222-1226.

    李丽美, 方萍萍, 杨志林, 等. 三维时域有限差分法计算金纳米粒子尺寸与活性的关联[J]. 光谱学与光谱分析, 2009, 29(5): 1222-1226.

    Li L M, Fang P P, Yang Z L, et al. Size dependent SERS activity of gold nanoparticles studied by 3D-FDTD simulation[J]. Spectroscopy and Spectral Analysis, 2009, 29(5): 1222-1226.

    Li L M, Fang P P, Yang Z L, et al. Size dependent SERS activity of gold nanoparticles studied by 3D-FDTD simulation[J]. Spectroscopy and Spectral Analysis, 2009, 29(5): 1222-1226.

[18] Qian XH. Theoretic investigation on plasmonics of noble metallic nanoparticles[D]. Minnesota: University of Minnesota, 2013: 24- 31.

    Qian XH. Theoretic investigation on plasmonics of noble metallic nanoparticles[D]. Minnesota: University of Minnesota, 2013: 24- 31.

[19] 刘娟意, 杨欢, 罗先刚, 等. 金属复合纳米粒子的局域表面等离子体特性研究[J]. 光学学报, 2010, 30(4): 1092-1095.

    刘娟意, 杨欢, 罗先刚, 等. 金属复合纳米粒子的局域表面等离子体特性研究[J]. 光学学报, 2010, 30(4): 1092-1095.

    Liu J Y, Yang H, Luo X G, et al. Investigation of localized surface plasmons resonance properties of metal composition nanoparticles[J]. Acta Optica Sinica, 2010, 30(4): 1092-1095.

    Liu J Y, Yang H, Luo X G, et al. Investigation of localized surface plasmons resonance properties of metal composition nanoparticles[J]. Acta Optica Sinica, 2010, 30(4): 1092-1095.

[20] Zhang X L, Zhang J, Quan J M, et al. Surface-enhanced Raman scattering activities of carbon nanotubes decorated with silver nanoparticles[J]. Analyst, 2016, 141(19): 5527-5534.

    Zhang X L, Zhang J, Quan J M, et al. Surface-enhanced Raman scattering activities of carbon nanotubes decorated with silver nanoparticles[J]. Analyst, 2016, 141(19): 5527-5534.

[21] Zhang J, Zhang X L, Chen S M, et al. Surface-enhanced Raman scattering properties of multi-walled carbon nanotubes arrays-Ag nanoparticles[J]. Carbon, 2016, 100: 395-407.

    Zhang J, Zhang X L, Chen S M, et al. Surface-enhanced Raman scattering properties of multi-walled carbon nanotubes arrays-Ag nanoparticles[J]. Carbon, 2016, 100: 395-407.

[22] Cui X, Dong L, Zhang W, et al. Numerical investigations of a multi-Walled carbon nanotube-based multi-segmented optical antenna[J]. Applied Physics B, 2010, 101(3): 601-609.

    Cui X, Dong L, Zhang W, et al. Numerical investigations of a multi-Walled carbon nanotube-based multi-segmented optical antenna[J]. Applied Physics B, 2010, 101(3): 601-609.

[23] Hu J, Wang C, Yang S, et al. Surface plasmon resonance in periodic hexagonal lattice arrays of silver nanodisks[J]. Journal of Nanomaterials, 2013, 2013: 838191.

    Hu J, Wang C, Yang S, et al. Surface plasmon resonance in periodic hexagonal lattice arrays of silver nanodisks[J]. Journal of Nanomaterials, 2013, 2013: 838191.

[24] Fang Y, Huang Y. Electromagnetic field redistribution in hybridized plasmonic particle-film system[J]. Applied Physics Letters, 2013, 102(15): 153108.

    Fang Y, Huang Y. Electromagnetic field redistribution in hybridized plasmonic particle-film system[J]. Applied Physics Letters, 2013, 102(15): 153108.

[25] Wang X, Li M, Meng L, et al. Probing the location of hot spots by surface-enhanced Raman spectroscopy: Toward uniform substrates[J]. ACS Nano, 2013, 8(1): 528-536.

    Wang X, Li M, Meng L, et al. Probing the location of hot spots by surface-enhanced Raman spectroscopy: Toward uniform substrates[J]. ACS Nano, 2013, 8(1): 528-536.

张晓蕾, 张洁, 朱永. Ag纳米颗粒修饰碳纳米管复合结构的拉曼增强及其结构参数优化[J]. 光学学报, 2018, 38(4): 0430004. Xiaolei Zhang, Jie Zhang, Yong Zhu. Raman Enhancement and Structural Parameters Optimization of Silver Nanoparticles/Carbon Nanotubes Composite Structure[J]. Acta Optica Sinica, 2018, 38(4): 0430004.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!