应用激光, 2020, 40 (4): 691, 网络出版: 2020-12-28   

CFRP激光加工热致损伤形貌研究

Study on Thermal Damage Morphology in Laser Processing of CFRP
作者单位
1 中国航空制造技术研究院, 北京 100024
2 中航复合材料有限责任公司, 北京 101300
摘要
为提高碳纤维增强树脂基复材(CFRP)加工质量和效率, 本文采用波长1 064 nm的Nd: YAG激光器对CFRP平板试样进行切割试验, 利用光学显微镜、扫描电镜、能谱仪等仪器对加工后组织的显微形貌、元素成分进行了测试。结果表明, CFRP经激光加工后存在热变形、微孔洞、微裂纹等多种热损伤形式, 与母材相比热影响区内材料发生了脱氧碳化, 未发生氮化。激光切割质量与激光加工参数密切相关, 调节工艺参数可抑制但无法彻底消除热致损伤, 获得了激光高质量切割CFRP的工艺窗口: 脉冲宽度τ≤0.3 ms、脉冲频率f ≤30 Hz, 吹气压力Pa≥0.7 MPa, 扫描速度v≥100 mm/min, 激光功率P≤150 W。最后采用优化的工艺参数组合, 在保证切割效率的前提下, 获得了平均热影响区深度小于120 μm的切缝。
Abstract
In order to improve the processing quality and efficiency of carbon fiber reinforced resin matrix composites (CFRP), the CFRP plate samples were cut by Nd:YAG laser with a wavelength of 1 064 nm. The morphology and elemental composition of the processed samples were measured by optical microscopy, scanning electron microscopy and energy dispersive spectrometer. The results show that there are many kinds of thermal damage in CFRP after laser processing, such as thermal deformation, micro-hole, micro-crack and so on. Compared with the base metal, the material in the heat affected zone has deoxidized and carbonized without nitriding. The quality of laser cutting is closely related to the parameters of laser processing. Thermal damage can be suppressed but can not be eliminated by adjusting the parameters. The high-quality process window of laser cutting CFRP is obtained: pulse width τ≤ 0.3 ms, pulse frequency f≤30 Hz, blowing pressure Pa≥0.7 MPa, scanning speed v≥100 mm/min, laser power P≤15. 0 W. Finally, the cutting seam with average depth of heat affected zone less than 120 μm was obtained by optimizing the process parameter. Meanwhile, the cutting efficiency is relatively high.
参考文献

[1] 陈祥宝, 张宝艳, 邢丽英.先进树脂基复合材料技术发展及应用现状[J].中国材料进展, 2009, 28(6): 2-12.

[2] 汪海晋.树脂基复合材料钻削缺陷产生机理与控制策略研究[D].济南: 山东大学, 2016.

[3] 陈玲林, 孙会来.复合材料加工研究现状及激光在其加工中的应用[J].激光杂志, 2014(2): 7-9.

[4] SATO Y, TSUKAMOTO M, MATSUOKA F, et al.Thermal effect on CFRP ablation with a 100-W class pulse fiber laser using a PCF amplifier[J].Applied Surface Science, 2017(417): 250-255.

[5] SATO Y, TSUKAMOTO M, NARIYAMA T, et al.Analysis of laser ablation dynamics of CFRP in order to reduce heat affected zone[C]//Proceedings of SPIE-The International Society for Optical Engineering, 2014.

[6] 姜珊珊.毫秒脉冲激光辐照碳纤维环氧树脂的温度场应力场数值分析[J].科学技术创新, 2018(3): 42-43.

[7] MUCHA P, BERGER P, WEBER R, et al.Calibrated heat flow model for the determination of different heat-affected zones in single-pass laser-cut CFRP using a CW CO2 laser[J].Applied Physics A, 2015, 118(4): 1509-1516.

[8] 益小苏.复合材料手册[M].北京: 化学工业出版社, 2009.

[9] 陈博, 万红, 穆景阳, 等.重频激光作用下碳纤维/环氧树脂复合材料热损伤规律[J].强激光与粒子束, 2008, 20(4): 547-552.

[10] OHKUBO T, SATO Y, MATSUNAGA E I, et al.Three-Dimensional Numerical Simulation during Laser Processing of CFRP[J].Applied Surface Science, 2017(417): S1052446328.

[11] CHENG C F, TSUI Y C, CLYNE T W, et al.Application of a three-dimensional heat flow model to treat laser drilling of carbon fibre composites[J].Acta Materialia, 1998, 46(12): 4273-4285.

[12] 贺鹏飞, 钱江佐.激光作用下复合材料损伤的数值模拟[J].同济大学学报(自然科学版), 2012, 40(7): 1046-1050.

[13] JAESCHKE P, STOLBERG K, BASTICK S, et al.Cutting and drilling of carbon fiber reinforced plastics (CFRP) by 70 W short pulse nanosecond laser[C]//Spie Lase, 2014.San Francisco, California, United States: 20 February 2014.

[14] 王贵兵, 罗飞, 刘仓理, 等.芳纶纤维复合材料激光烧蚀损伤形貌[J].激光技术, 2006, 30(2): 168-169.

[15] 王含妮, 谭勇, 张喜和.芳纶纤维复合材料在脉冲激光作用下的热损伤研究[J].光电技术应用, 2015(1): 26-31.

[16] 庞思勤, 刘伟成. 激光加工高性能复合材料的工艺与机理研究[J].兵工学报, 1992(4): 84-91.

[17] 王文君.飞秒激光金属加工中的形状及形貌控制研究[D].西安: 西安交通大学, 2008.

李元成, 蔡敏, 毛忠, 张伟, 张晓兵, 梁恒亮. CFRP激光加工热致损伤形貌研究[J]. 应用激光, 2020, 40(4): 691. Li Yuancheng, Cai Min, Mao Zhong, Zhang Wei, Zhang Xiaobing, Liang Hengliang. Study on Thermal Damage Morphology in Laser Processing of CFRP[J]. APPLIED LASER, 2020, 40(4): 691.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!