中国激光, 2019, 46 (9): 0903002, 网络出版: 2019-09-10   

大口径钛宝石晶体全频域透射波前误差高精度加工工艺研究 下载: 1043次

High-Precision Transmission-Wavefront-Processing Technology of Large Aperture Ti∶sapphire Crystal at Full Spatial Frequency
作者单位
1 长春理工大学光电工程学院, 吉林 长春 130022
2 太原理工大学, 山西 太原 030024
引用该论文

金寿平, 付跃刚, 金钰皓, 郝志旭. 大口径钛宝石晶体全频域透射波前误差高精度加工工艺研究[J]. 中国激光, 2019, 46(9): 0903002.

Jin shouping, Fu Yuegang, Jin Yuhao, Hao Zhixu. High-Precision Transmission-Wavefront-Processing Technology of Large Aperture Ti∶sapphire Crystal at Full Spatial Frequency[J]. Chinese Journal of Lasers, 2019, 46(9): 0903002.

参考文献

[1] Huang C P, Nathel H, Asaki M T, et al. 17-fs pulses from a self-mode-locked Ti∶sapphire laser[J]. Optics Letters, 1992, 17(18): 1289-1291.

[2] 张宝辉, 徐军, 杨秋红, 等. 基于钛宝石的超快超强激光新进展[J]. 激光与光电子学进展, 2013, 50(4): 040003.

    Zhang B H, Xu J, Yang Q H, et al. New progress of ultrafast and ultraintense lasers based on Ti∶sapphire[J]. Laser & Optoelectronics Progress, 2013, 50(4): 040003.

[3] Nisoli M, de Silvestri S, Svelto O, et al. . Compression of high-energy laser pulses below 5 fs[J]. Optics Letters, 1997, 22(8): 522-524.

[4] 刘加, 王胭脂, 赵睿睿, 等. 飞秒脉冲钛宝石激光器中的低振荡高色散镜对[J]. 中国激光, 2018, 45(10): 1003001.

    Liu J, Wang Y Z, Zhao R R, et al. Low vibration and high dispersion mirror pair in femtosecond pulsed Ti∶sapphire laser[J]. Chinese Journal of Lasers, 2018, 45(10): 1003001.

[5] 张连平, 殷国玲, 李凤琴, 等. 900 nm波段的全固态高功率单频可调谐钛宝石激光器[J]. 中国激光, 2017, 44(12): 1201002.

    Zhang L P, Yin G L, Li F Q, et al. All-solid-state tunable Ti∶sapphire laser with high-power and single-frequency at 900 nm[J]. Chinese Journal of Lasers, 2017, 44(12): 1201002.

[6] Morgner U, Kärtner F X, Cho S H, et al. Sub-two-cycle pulses from a Kerr-lensmode-locked Ti∶sapphire laser[J]. Optics Letters, 1999, 24(6): 411-413.

[7] 苏静, 靳丕铦, 卫毅笑, 等. 自动宽调谐的全固态连续单频钛宝石激光器[J]. 中国激光, 2017, 44(7): 0701006.

    Su J, Jin P X, Wei Y X, et al. Automatically and broadly tunable all-solid-state continuous single-frequency Ti∶sapphire laser[J]. Chinese Journal of Lasers, 2017, 44(7): 0701006.

[8] 廖睿, 文锦辉, 刘智刚, 等. 宽频带亚10 fs钛宝石激光器的特性研究[J]. 中国激光, 2002, 29(s1): 53-55.

    Liao R, Wen J H, Liu Z G, et al. Characterization of sub-10-fs KLM Ti∶sapphire laser[J]. Chinese Journal of Lasers, 2002, 29(s1): 53-55.

[9] Schaffers KI, Bayramian AJ, Davis PJ, et al. Improved optical quality for Ti∶sapphire using MRF[C]∥Advanced Solid-State Photonics 2008, January 27-30, 2008, Nara, Japan. Washington, D.C.: OSA, 2008: WE15.

[10] Baisden P A, Atherton L J, Hawley R A, et al. Large optics for the national ignition facility[J]. Fusion Science and Technology, 2016, 69(1): 295-351.

[11] Liao W L, Dai Y F, Nie X Q, et al. Rapid fabrication technique for nanometer-precision aspherical surfaces[J]. Applied Optics, 2015, 54(7): 1629-1638.

[12] 万林林, 戴鹏, 刘志坚, 等. 蓝宝石超精密研磨加工研究进展[J]. 兵器材料科学与工程, 2018, 41(1): 115-123.

    Wan L L, Dai P, Liu Z J, et al. Research progress in ultra-precision lapping process of sapphire[J]. Ordnance Material Science and Engineering, 2018, 41(1): 115-123.

[13] 耿其东, 李春燕. 超声磁力研磨加工参数对蓝宝石表面粗糙度的影响[J]. 表面技术, 2018, 47(7): 104-111.

    Geng Q D, Li C Y. Influence of ultrasonic polishing and magnetic abrasive finishing processing parameters on surface roughness of sapphire[J]. Surface Technology, 2018, 47(7): 104-111.

[14] 张树葵, 王清月, 彭翰生. 掺钛蓝宝石与超短脉冲激光[J]. 强激光与粒子束, 1997, 9(1): 149-156.

    Zhang S K, Wang Q Y, Peng H S. Ti∶sapphire and ultrashort pulse lasers[J]. High Power Laser and Particle Beams, 1997, 9(1): 149-156.

[15] 蓝信钜. 激光技术[M]. 北京: 科学出版社, 2000: 138- 140.

    Lan XJ. Laser technology[M]. Beijing: Science Press, 2000: 138- 140.

[16] 王吉翠, 邓乾发, 周兆忠, 等. 蓝宝石晶片加工表面质量检测方法综述[J]. 超硬材料工程, 2011, 23(5): 51-55.

    Wang J C, Deng Q F, Zhou Z Z, et al. Review of the methods of surface damage inspection for grinded sapphire substrate[J]. Superhard Material Engineering, 2011, 23(5): 51-55.

[17] 许永超, 陆静, 徐西鹏. 蓝宝石表面形貌的功率谱与分形特征分析[J]. 超硬材料工程, 2017, 29(2): 56-60.

    Xu Y C, Lu J, Xu X P. Analysis of power spectrum and fractal characteristics of the surface topography of sapphire[J]. Superhard Material Engineering, 2017, 29(2): 56-60.

[18] 杨旭东. 脉冲可调谐掺钛蓝宝石激光器的研究[D]. 哈尔滨: 哈尔滨工业大学, 2006.

    Yang XD. Study on pulse tuned Ti∶sapphire laser[D]. Harbin: Harbin Institute of Technology, 2006.

[19] 郭培基, 余景池, 丁泽钊, 等. 光学玻璃光学均匀性的绝对测量技术[J]. 激光杂志, 2003, 24(3): 26-27.

    Guo P J, Yu J C, Ding Z Z, et al. Absolute testing method of the homogeneity of optical glass[J]. Laser Journal, 2003, 24(3): 26-27.

[20] de Vany A S. Using a Murty interferometer for testing the homogeneity of test samples of optical materials[J]. Applied Optics, 1971, 10(6): 1459-1460.

[21] Ai C, Wyant J C. Measurement of the inhomogeneity of a window[J]. Optical Engineering, 1991, 30(9): 1399-1405.

[22] 姚超, 王辉, 张政, 等. 高功率固体激光器中大口径光学器件波前误差的建模及控制方法[J]. 光学学报, 2017, 37(7): 0714003.

    Yao C, Wang H, Zhang Z, et al. Wavefront error modeling and control method for large aperture optical unit in high power solid-state laser[J]. Acta Optica Sinica, 2017, 37(7): 0714003.

[23] Aikens D M, Wolfe C R, Lawson J K. Use of power spectral density (PSD) functions in specifying optics for the National Ignition Facility[J]. Proceedings of SPIE, 1995, 2576: 281-292.

[24] Nie X Q, Li S Y, Shi F, et al. Generalized numerical pressure distribution model for smoothing polishing of irregular midspatial frequency errors[J]. Applied Optics, 2014, 53(6): 1020-1027.

[25] Shu Y, Nie X, Shi F, et al. Smoothing evolution model for computer controlled optical surfacing[J]. Journal of Optical Technology, 2014, 81(3): 164-167.

金寿平, 付跃刚, 金钰皓, 郝志旭. 大口径钛宝石晶体全频域透射波前误差高精度加工工艺研究[J]. 中国激光, 2019, 46(9): 0903002. Jin shouping, Fu Yuegang, Jin Yuhao, Hao Zhixu. High-Precision Transmission-Wavefront-Processing Technology of Large Aperture Ti∶sapphire Crystal at Full Spatial Frequency[J]. Chinese Journal of Lasers, 2019, 46(9): 0903002.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!